검색 결과

"분수"에 대한 검색 결과 (총 19개)

분수분해

교육 > 수학 > 미적분학 | 익명 | 2025-07-31 | 조회수 12

# 분수분해 ## 개요 분수분해(Partial Fraction Decomposition)는 복잡한 유리 함수를 더 단순한 유리 함수의 합으로 분해하는 대수적 기법입니다. 주로 적분 계산, 미분 방정식 풀이, 역라플라스 변환 등에서 활용되며, 유리 함수의 분모를 일차 또는 이차 인수로 분해한 뒤 분자를 적절히 조합하여 표현합니다. ## 분수분해의 정의와 ...

공통 분모

교육 > 수학 > 기초수학 | 익명 | 2025-09-15 | 조회수 41

# 공통 분모## 개요 **공통모**(Common Denominator)는수의 덧셈과 뺄셈을 수행할 때 필수적인 개념으로, 두 개 이상의 분수가 같은 분모를 가지도록 조정하는 과정에서 사용됩니다. 분모가 서로 다른 분수는 직접 계산할 수 없기 때문에, 공통 분모를 찾아 각 분수를 동등한 값으로 변환한 후 연산을 수행해야 합니다. 이 문서에서는 공통 분모의...

완전제곱식

수학 > 대수학 > 특수 다항식 | 익명 | 2025-09-15 | 조회수 4

# 완전제곱식 ## 개요 **완전제식**(完全平方式, Perfect Trinomial)은 대수학 자주 등장하는 특수 다항식의 일종으로, 어떤 이항식의 제곱으로 표현할 수 있는 삼항식을 의미한다. 즉, 두 항의 합 또는 차를 제곱한 결과로 나타나는 다항식이다. 완전제곱식은 인수분해, 방정식 풀이, 제곱근 계산, 이차함수의 꼭짓점 찾기 등 다양한 수학적 응...

피제수

수학 > 기초수학 > 나눗셈 | 익명 | 2025-09-14 | 조회수 3

# 피제수 피제수(被除數)는 나눗셈 연산에서 나누어지는 수를 의미하는 수학 용어. 나눗셈은 두 수를 비교하거나 어떤 양을 일정한 크로 나누는 과정 나타내며, 이 과정에서 중요한 역할을 하는 세 가지 구성 요소가 있습니다: **피제수**, **제수**(除數), 그리고 **몫**(商). 이 문서에서는 피제수의 정의, 수학적 표현, 활용 예시, 그리고 관련 개...

DP 테이블

기술 > 컴퓨터과학 > 알고리즘 | 익명 | 2025-09-13 | 조회수 4

# DP 테이블 ##요 **DP 테이블Dynamic Programming Table)은 동적획법(Dynamic Programming, DP) 구현할 때 사용하는 데이터 구조로, 주로 1차원 또는 2원 배열 형태로 표현된다. DP는 복잡한 문제를 작은 하위 문제로 나누어 해결한 후, 그 결과를 저장하고 재사용함으로써 중복 계산을 피하고 효율적으로 최적해를...

인수정리

수학 > 대수학 > 다항식 정리 | 익명 | 2025-09-07 | 조회수 6

# 인수정리 인수정리는 대수학에서 다항식의 인수를 판별하고 다항식을 인수해하는 데 유용한 기본 정리 중 하나이다. 특히, 일차 인수의 존재 여부를 간단한 계산을 통해 확인할 수 있게 해주며, 다항식의 근과 인수 사이의 관계를 명확히 한다. 이 정리는 고등학교 수학에서부터 대학 수준의 대수학까지 폭넓게 활용되며, 다항식의 해를 구하거나 인수분해를 수행할 때...

미적분학

교육 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 5

# 미적분학 ## 개요 미적학(微積分學, Calculus)은 수학의 한 분야로, **변화율**(미분)과 **누적량**(적분)을 다루는 학문이다. 현대 과학과 공학, 경제학, 물리학 등 다양한 분야에서 핵심 도구로 사용되며, 함수의 기울기, 면적, 부피, 속도, 가속도 등을 분석하는 데 필수적인 역할을 한다. 미적분학은 17세기에 아이작 뉴턴(Isaac ...

나눗셈 규칙

기술 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 5

# 나눗셈 규칙 나눗셈 규칙(Division Rule)은 미적분학에서 두 함수의 **비**(ratio)로 표현된 함수를 미분할 때 사용하는 중요한 미분 법칙 중 하나입니다. 이 규칙은 곱셈 규칙(Product Rule)과 함께 초월함수, 유리함수 등의 도함수를 구하는 데 핵심적인 역할을 하며, 고등학교 수학에서 대학 수준의 해석학까지 널리 활용됩니다. ...

대입법

교육 > 수학 > 대수학 | 익명 | 2025-09-05 | 조회수 11

# 대입법 **대입법**(代入法, Substitution Method)은 방정식 또는 연립방정식을 풀기 위한 기본적이고 효과적인 대수적 기 중 하나입니다. 두 개 이상의 미수가 포함된 연립일차방정식을 해결할 때 자주 사용되며, 한 변수를 다른 변수로 표현하여 다른 방정식에 대입함으로써지수의 수를 줄이고 문제를 단순화하는 방식으로 작동합니다. 이 방법은 중...

사칙연산

수학 > 수학개념 > 연산자 | 익명 | 2025-09-04 | 조회수 7

# 사칙연산 ## 개요 **사칙연산**(四演算)은 수학의 기본이 되는 네 가지 연산인 **덧셈**(加法), **뺄셈**(減法), **셈**(乘法), **나눗셈**(除法) 총칭하는 용어입니다. 이 네 가지 연은 수를 다루는 모든 수학적 활동의 기초가 되며, 초등 수학부터 고등 수학, 그리고 실생활의 계산 문제까지 널리 사용됩니다. 사칙연산은 자연수, 정수...

제곱근

교육 > 수학 > 고등수학 | 익명 | 2025-07-31 | 조회수 14

# 제곱근 ## 개요 제곱근은 수학에서 중요한 개념으로, 어떤 수를 제곱하여 원래의 수를 얻을 수 있는 수를 의미합니다. 예를 들어, 2는 4의 제곱근이 되며, 3은 9의 제곱근입니다. 이 문서에서는 제곱근의 정의, 성질, 계산 방법, 응용 분야 등을 체계적으로 설명하며, 고등학교 수학 수준의 이해를 돕기 위해 구성되었습니다. ## 제곱근의 정의 ###...

무한극한

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 23

# 무한극한 ## 개요 무한극한(infinite limit)은 수학에서 함수의 극한이 유한한 값이 아닌 **무한대(∞)**로 발산하는 경우를 의미합니다. 이 개념은 미적분학에서 함수의 행동 분석, 점근선(漸近線) 탐구, 연속성 판단 등에 핵심적인 역할을 합니다. 무한극한은 수치적으로 정의된 극한이 아닌 **함수의 성질**을 나타내며, 이는 함수가 특정 값...

나눗셈 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 27

# 나눗셈 규칙 ## 개요 나눗셈 규칙(Quotient Rule)은 미적분학에서 두 함수의 비(商)를 미분할 때 사용하는 기본적인 도함수 계산법이다. 이는 분자와 분모가 각각 다른 함수로 구성된 경우, 단순히 분자와 분모를 따로 미분한 후 나누는 것이 아니라, 특정 공식을 통해 정확하게 도함수를 구할 수 있도록 한다. 본 문서에서는 나눗셈 규칙의 ...

곱셈 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 23

# 곱셈 규칙 (Product Rule) ## 개요 곱셈 규칙은 미적분학에서 두 함수의 곱을 미분할 때 사용하는 기본적인 도함수 계산법이다. 이 규칙은 단순히 각 함수를 별도로 미분한 후 곱하는 것이 아니라, **첫 번째 함수의 도함수와 두 번째 함수의 곱**과 **첫 번째 함수와 두 번째 함수의 도함수의 곱**을 더해야 한다는 점에서 중요하다. 이 규칙...

적분법

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 30

# 적분법 ## 개요 적분법(integral calculus)은 미적분학의 핵심 분야로, 함수의 **적분**을 연구하는 수학 이론이다. 주로 곡선 아래의 넓이, 부피, 누적량 등을 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 적분은 미분과 반대되는 개념으로, **미분 방정식**을 해결하거나 함수의 원시함수를 찾는 데 필수적...

무리수

교육 > 수학 > 기초수학 | 익명 | 2025-07-16 | 조회수 17

# 무리수 ## 개요 무리수(無理數, *irrational number*)는 유리수(有理數)가 아닌 실수를 의미합니다. 유리수는 두 정수의 비로 표현할 수 있는 수이지만, 무리수는 그렇지 못한 수입니다. 이들은 수학에서 중요한 역할을 하며, 기하학, 대수학, 해석학 등 다양한 분야에 적용됩니다. ## 정의 및 특성 무리수는 **유리수가 아...

유리수

교육 > 수학 > 기초수학 | 익명 | 2025-07-16 | 조회수 29

# 유리수 ## 개요 유리수는 수학에서 중요한 개념으로, 두 정수의 비로 표현할 수 있는 수를 의미합니다. 이 문서에서는 유리수의 정의, 성질, 연산 방법, 역사적 배경 및 무리수와의 차이점을 체계적으로 탐구합니다. 유리수는 일상생활과 과학 기술 분야에서 넓게 활용되며, 수학 교육에서 기본적인 개념으로 자리 잡고 있습니다. --- ## 1. 정의 및 ...

정수

교육 > 수학 > 기초수학 | 익명 | 2025-07-15 | 조회수 30

# 정수 ## 개요 정수는 수학에서 가장 기본적인 숫자 집합 중 하나로, **0과 양의 정수, 음의 정수**를 포함합니다. 정수는 자연수(1, 2, 3, ...)와 그 반대 방향의 음의 정수(-1, -2, -3, ...) 그리고 0을 모두 포함하는 집합입니다. 이 문서에서는 정수의 정의, 성질, 역사적 배경, 연산 규칙, 실생활 적용 등을 체계적으로 탐구...

수학

교육 > 수학 > 기초수학 | 익명 | 2025-07-15 | 조회수 45

# 수학 ## 개요 수학은 양, 구조, 공간 및 변화와 같은 추상적 개념을 탐구하는 체계적인 학문이다. 고대부터 현대까지 인간의 사고와 과학 기술 발전에 깊이 관여하며, 자연과학, 공학, 경제학 등 다양한 분야에서 필수적인 도구로 활용된다. 수학은 **기초수학**과 **심화수학**으로 나뉘며, 본 문서에서는 기초수학의 핵심 개념과 역사적 배경을 중심으로 ...