# 그래프 표현 함수의 **그래프 표현**(Graphical Representation)은 함수의 정의역과 공역 사이의 관계를 시각적으로 나타내는 방법으로, 미적분학에서 매우 중요한 도구 중 하나입니다. 함수의 그래프를 통해 함수의 성질, 변화 양상, 극값, 연속성, 미분 가능성 등을 직관적으로 파악할 수 있으며, 복잡한 수학적 개념을 이해하고 설명하는 ...
검색 결과
"부호 변화"에 대한 검색 결과 (총 3개)
# 임계점 ## 개요 임계점(臨界, 영어: critical point) 미분학에서 함수의 국소적 성질을 분석하는 데 핵심적인 개념이다. 함수의 그래프에서 극값(극대 또는 극소)이 존재할 수 있는 후보 지점으로, 함수의 변화율이 0이 되거나 미분이 존재하지 않는 점을 의미한다. 임계점은 함수의 증가와 감소가 전환되는 지점, 즉 극값을 찾는 데 매우 중요한...
# 변곡점 ## 개요 변곡점(變曲點, inflection point)은 함수 그래프가 **오목에서 볼록으로**, 또는 **볼록에서 오목으로** 변하는 지점을 의미한다. 즉, 함수의 **곡률**(curvature)이 부호를 바꾸는 점으로, 그래프의 형태가 변하는 전환점이라 할 수 있다. 변곡점은 미분학에서 함수의 그래프를 분석하고 해석하는 데 중요한 역할...