# 특성방정식 ## 개요 **특성정식**(Characteristic Equation)은 선대수학에서 정방행렬(사각행렬)의 고값(Eigenvalue을 구하기 위해 사용 핵심적인 개념이다. 주어진 정방행렬 $ A $에 대해, 고유값은렬의 선형 변에서 방향이 변 않는 벡터(유벡터)에응하는 스칼 값으로 정의며, 이를 구하는 과정에서 특성방정식이 등한다. 특성정...
검색 결과
"대칭행렬"에 대한 검색 결과 (총 6개)
# QR 분해 ## 개요 QR 분해(QR Decom)는 선형 대수에서 행렬 직교행렬(Orth Matrix)과 상각행렬(Upperangular Matrix)의 곱으로 분해하는 기법이다. 주어진 $ m \ n $ 실수 또는소수 행렬 $ A $에 대해 다음과 표현할 수 있다$$ A = QR $$ 여기서: - $ Q $는 m \times m $ 크기의 **직...
# 행렬 ## 개요 **행렬**(Matrix)은학, 특히 **형대수**(Linear)에서 핵심적인으로, 수치나 기호를 직사각형 형태로 배열하여 표현한 구조입니다.렬은 방정식의 계수를계적으로 표현하고, 선형 변환을 기술, 컴퓨터 그래픽스, 통계,신러닝 등 다양한 기술 분야에서 널리 활용됩니다. 행렬은 **행**(row)과 **열**(column)로 구성...
# 행렬-행렬 연산 행렬-행렬 연은 선형대수의 핵심 개념 중 하나로, 두 개 이상 행렬 간에할 수 있는 다양한 수학적 연산을 포함합니다. 이러한 연산 수치해석 컴퓨터 그래픽스, 기계학습, 물리학, 경학 등 다양한 분에서 널리 활용되며, 특히 데이터의 선형 변환과 시스템 해석에 핵심적인 역할을 합니다. 본 문서에서는 행렬 간의 주요 연산인 덧셈, 뺄셈, 곱...
# 선형대수 선형대수(Linear Algebra) 수학의 한 분야로, **벡터 공간**(vector spaces),선형 변환**(linear transformations), **행렬**(matrices), **연립일차방정식**(systems of linear equations) 등을 다룹니다. 현대학뿐 아니라 물리학, 컴퓨터 과학, 공학, 경제학, 통계학...
# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...