검색 결과

"근방"에 대한 검색 결과 (총 7개)

일계 상미분방정식

수학 > 미분방정식 > 상미분방정식 | 익명 | 2025-12-07 | 조회수 4

# 일계 상미분방정식 ## 개요 일계 상미분방정식(一階 常微分方程式, First-order Ordinary Differential Equation)은 미분방정식의 한 종류로, 미지 함수의 **일계 도함수**(즉, 첫 번째 도함수)만을 포함하고 있으며, 독립 변수가 하나인 경우를 다룹니다. 일반적인 형태는 다음과 같습니다: $$ \frac{dy}{dx}...

로피탈의 정리

교육 > 수학 > 미적분학 | 익명 | 2025-10-04 | 조회수 17

# 로피탈의 정리 로피탈의 정리(L'Hpital's Rule)는적분학에서한을 구할 때용하게 사용되는리 중 하나로 특정 조건 하에서 부정형(indeterminate form)의 극한을 미을 통해 계산 수 있도록 해줍니다. 특히, $\frac{0}{0}$ 또는 $\frac{\infty}{\infty}$ 형태의 극한을룰 때 자주 활용되며, 복잡한 함수의 극한을...

열린_집합.md

수학 > 위상수학 > 일반 위상 | 익명 | 2025-09-30 | 조회수 20

# 열린 집합 열린 집합(Open Set) **일반 위상수학General Topology) 가장 기본적이고 핵심적인 개념 중 하나이다. 위 공간에서 열린합은 점들의 "처" 또는 "주"을 수학적으로 정의하는 데 사용되며, 연속성, 수렴, 연결성 등의 위상적 성질을 정의하는 데 필적인 역할을. 이 문서에서는 열린 집합의 정의, 성질, 예시, 그리고상 수학에서...

등각사상

수학 > 복소해석학 > 변환 | 익명 | 2025-09-20 | 조회수 28

# 등각사상 등각사상(Conformal Mapping)은 복소해석학에서 중요한 개념 중 하나로, 두 평면 영역 사이의 복소 함수 중에서 각도를 보존하는 특성을 가진 함수를 말한다. 이는 기하학적 변환의 일종으로, 특히 유체역학, 전기공학, 열전도 문제 등 다양한 응용 분야에서 널리 사용된다. 본 문서에서는 등각사상의 정의, 성질, 예시, 그리고 주요 응용...

매끄러움

수학 > 미분방정식 > 해석학적 성질 | 익명 | 2025-09-17 | 조회수 28

# 매끄러움 ## 개요수학, 특히 미분정식 이론에서 **매끄러움**(smooth)은 함수의 미분 가능성 정도를 나타내는 중요한 개념이다. 매끄러운 함수는 특정한 미분 가능성 조건을 만족하는 함수로, 미분방정식의 해가 존재하고 유일한지를 판단하거나, 해의 정규성(regularity)을 분석하는 데 핵심적인 역할을 한다. 매끄러움은 해석학적 성질 중 하나로,...

# 피카르-린델뢰프 정리 ## 개요 피카르-린델뢰프리**(Picard–Lindelöf Theorem)는 상미분방정식(Ordinary Differential Equation, ODE)의 해가 존재하고 유일함을 보장하는 중요한 정리로, 초기값 문제의 해에 대한 존재성과 유일성에 관한 기본적인 결과를 제공한다. 이 정리는 19세기 말 프랑스의 수학자 **에밀...

연속 함수

수학 > 위상수학 > 일반 위상 | 익명 | 2025-09-09 | 조회수 30

# 연속 함수 ## 개요 **연속 함수**(continuous function)는 위상수학에서 가장 기본적이면서도 핵심적인 개념 중 하나이다. 직관적으로, 연속 함수란 입력값이 조금만 변할 때 출력값도 조금만 변하는 함수를 의미한다.는 기하학적으로 "끊김 없이 이어지는 그래프"를 그리는 함수와 유사하다. 그러나 위상수학에서는 거리 개념이 필요 없이, *...