# 평균 풀링 (Average Pooling) ## 개요/소개 평균 풀링(Average Pooling)은 딥러닝에서 네트워크의 공간적 차원을 축소하고, 계산 복잡도를 줄이기 위해 사용되는 기법이다. 특히 컨볼루션 신경망(Convolutional Neural Network, CNN)에서 입력 데이터(예: 이미지)의 특징을 추출한 후, 지역적인 정보를 평균화...
검색 결과
"CDO"에 대한 검색 결과 (총 142개)
# 백프로파게이션 (Backpropagation) ## 개요 백프로파게이션(Backpropagation)은 인공 신경망(Artificial Neural Network, ANN)을 학습시키는 데 사용되는 주요 알고리즘 중 하나입니다. 이 기법은 **오차 역전파**라고도 불리며, 네트워크의 출력과 실제 타겟 값 사이의 오차를 최소화하기 위해 가중치와 편향을 ...
# LSTM ## 개요 LSTM(Long Short-Term Memory)는 시계열 데이터 처리에 특화된 인공지능 기술로, **기존 순환 신경망(RNN)**의 한계를 극복하기 위해 1997년 Hochreiter & Schmidhuber에 의해 제안되었습니다. RNN은 단기 기억을 유지하지만 장기 의존성을 처리하는 데 어려움이 있었고, 이로 인해 **기울기...
# 무한극한 ## 개요 무한극한(infinite limit)은 수학에서 함수의 극한이 유한한 값이 아닌 **무한대(∞)**로 발산하는 경우를 의미합니다. 이 개념은 미적분학에서 함수의 행동 분석, 점근선(漸近線) 탐구, 연속성 판단 등에 핵심적인 역할을 합니다. 무한극한은 수치적으로 정의된 극한이 아닌 **함수의 성질**을 나타내며, 이는 함수가 특정 값...
# 복합함수 ## 개요 복합함수(composite function)는 수학에서 두 함수를 결합하여 새로운 함수를 생성하는 방법이다. 이 개념은 미적분학, 해석학, 공학 등 다양한 분야에서 핵심적인 역할을 하며, 특히 복잡한 수식의 도함수 계산에 필수적이다. 복합함수는 하나의 함수의 결과를 다른 함수에 입력으로 사용하는 방식으로 정의되며, 이는 함수의...
# 연쇄법칙 (Chain Rule) ## 개요/소개 연쇄법칙(Chain Rule)은 미적분학에서 복합함수(composite function)의 도함수를 계산하는 기본적인 규칙이다. 두 함수 $ f(x) $와 $ g(x) $가 주어졌을 때, $ h(x) = f(g(x)) $로 정의된 복합함수의 도함수는 $ h'(x) = f'(g(x)) \cdot g'(x)...
# 나눗셈 규칙 ## 개요 나눗셈 규칙(Quotient Rule)은 미적분학에서 두 함수의 비(商)를 미분할 때 사용하는 기본적인 도함수 계산법이다. 이는 분자와 분모가 각각 다른 함수로 구성된 경우, 단순히 분자와 분모를 따로 미분한 후 나누는 것이 아니라, 특정 공식을 통해 정확하게 도함수를 구할 수 있도록 한다. 본 문서에서는 나눗셈 규칙의 ...
# 곱셈 규칙 (Product Rule) ## 개요 곱셈 규칙은 미적분학에서 두 함수의 곱을 미분할 때 사용하는 기본적인 도함수 계산법이다. 이 규칙은 단순히 각 함수를 별도로 미분한 후 곱하는 것이 아니라, **첫 번째 함수의 도함수와 두 번째 함수의 곱**과 **첫 번째 함수와 두 번째 함수의 도함수의 곱**을 더해야 한다는 점에서 중요하다. 이 규칙...
# 극한 ## 개요 극한(limit)은 수학에서 함수의 행동을 분석하는 데 핵심적인 개념으로, 특정 점에 가까운 입력값에 대한 출력값의 추세를 나타냅니다. 미적분학의 기초가 되며, 도함수와 적분의 정의에 필수적이며, 물리학, 공학 등 다양한 분야에서 응용됩니다. 극한은 수렴과 발산을 이해하는 데 중요한 역할을 하며, 함수의 연속성, 미분 가능성 등...
# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...
# 함수 ## 개요 함수는 수학에서 중요한 개념으로, 하나의 입력 값에 대해 단일 출력 값을 매핑하는 규칙을 의미합니다. 이는 다양한 분야에서 모델링과 예측을 가능하게 하며, 대수학, 미적분학, 과학 등에서 핵심적인 역할을 합니다. 본 문서에서는 함수의 정의, 종류, 성질, 실생활 적용 등을 상세히 설명합니다. --- ## 정의 함수는 **도메인**(...
# 출력 게이트 ## 개요 출력 게이트(Output Gate)는 인공지능 분야에서 특히 **장기 기억 유닛(LSTM)**과 같은 순환 신경망(RNN) 구조에서 중요한 역할을 하는 기술적 요소이다. 이 개념은 시계열 데이터 처리, 자연어 이해 등 복잡한 패턴 인식 작업에 필수적이며, 신경망의 내부 상태를 조절하는 데 핵심적인 기능을 수행한다. 본 문서에서는...
# 망각 게이트 (Forget Gate) ## 개요/소개 망각 게이트는 인공지능 분야에서 특히 **장기 기억 신경망(LSTM, Long Short-Term Memory)**의 핵심 구성 요소로, 시계열 데이터 처리에 있어 중요한 역할을 합니다. 이 기술은 전통적인 순환 신경망(RNN)의 한계인 "긴급 의존성 문제"를 해결하기 위해 설계되었습니다. 망각 게...
# 입력 게이트 ## 개요 입력 게이트는 인공지능 분야에서 특히 **장기 기억 유닛**(LSTM)과 같은 **순환 신경망**(RNN) 구조에서 핵심적인 역할을 하는 구성 요소이다. 이 게이트는 시퀀스 데이터 처리 중 새로운 정보가 어떻게 저장되는지를 제어하며, 장기 의존성을 관리하는 데 기여한다. 입력 게이트의 작동 원리는 신경망의 **세포 상태**(ce...
# LSTM ## 개요 LSTM(Long Short-Term Memory)는 시계열 데이터와 같은 순차적 정보를 처리하는 데 특화된 인공지능 기술로, **기존의 순환 신경망(RNN)**에서 발생하던 **장기 의존성 문제**(Vanishing Gradient Problem)를 해결하기 위해 설계되었습니다. LSTM은 기억을 유지하고 필요 시 정보를 ...
# 미니 배치 경사 하강법 ## 개요 미니 배치 경사 하강법(Mini-Batch Gradient Descent)은 기계 학습에서 파라미터 최적화를 위한 주요 알고리즘 중 하나로, **배치 경사 하강법(Batch Gradient Descent)**과 **스토캐스틱 경사 하강법(Stochastic Gradient Descent)**의 중간 형태이다. 이 방법...
# Q-값 ## 개요 Q-값(Q-value)은 강화학습(Reinforcement Learning, RL)에서 중요한 개념으로, 특정 상태(state)에서 특정 행동(action)을 선택했을 때 기대할 수 있는 누적 보상(reward)을 나타냅니다. 이는 에이전트(agent)가 최적의 정책(policy)을 학습하는 데 필수적인 역할을 하며, Q-학습...
# 로컬라이제이션 (Localization) ## 개요/소개 로컬라이제이션은 글로벌 시장에서 제품, 서비스 또는 콘텐츠를 특정 지역의 언어, 문화, 규제에 맞게 조정하는 과정을 의미합니다. 이는 단순한 번역을 넘어, 현지 사용자의 선호도, 사회적 맥락, 법적 요건 등을 고려해 전략적으로 접근해야 합니다. 특히 글로벌 마케팅에서 로컬라이제이션은 기업의 ...