검색 결과

"Wikipedia"에 대한 검색 결과 (총 327개)

전기회로 해석

공학 > 전자공학 > 회로 분석 | 익명 | 2025-09-20 | 조회수 33

# 전기회로 해석 전기회로 해석은 전자공학의 핵심 분야 중 하나로, 전기적소들(저항, 커패시터, 인덕터, 전원 등)이 연결된로의 전압 전류, 전력 물리량을 계산하고 예하는 과정을 의미합니다 이는 회로계, 고장 진단, 시스템 최적화 등 다양한 응용 분야에 기초가 되며, 전기전자 기술의 발전에 필수적인 역할을 합니다. 본 문서에서는 전기회로 해석의 기본 원리...

선형 가속도

과학 > 물리학 > 운동학 | 익명 | 2025-09-20 | 조회수 39

# 선형 가속도 ##요 선형 가속도(Linear Acceleration)는 물체 직선 방향으로 속도 변화시키는 비율을 나타내는 물리이다. 운동학(Mechan)에서 가속는 속도의 시간에 대한 변화율로 정의되며, 특히 방향이 일정한 직선 운동에서의 가속도를 **선형 가속도**라고 부른다. 이는 회전 운동에서 발생하는 각가속도(Angular Accelerat...

복소수.md

수학 > 복소해석학 > 복소수 해 | 익명 | 2025-09-20 | 조회수 30

# 복소수 복소수(複素數, Complex)는 실수부와 허부로 구성된 수 체계로 수학, 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다.소수는 차원 평면상 점으로 시각화할 수, 복소해석학(Complex Analysis의 기초를성한다. 이 문서 복소수의 정, 대수적 성질, 기하적 표현 연산법, 그리고 응용 분야에 대해 체계적으로 설명한다. --- ...

복소근

수학 > 대수학 > 복소근 | 익명 | 2025-09-20 | 조회수 30

# 복소근 ## 개요 복근(複素, Complex Root)이란정식의 해 실수부와 허부를 모두 가질 수 있는 복소수 형태 근을 의미한다. 특히 실계수 다방정식에서 실수 범위 내 해를 찾을 수 없을 때, 복수 범위로 확장하면 해가 존재하는 경우가 많으며, 이러한 해를 복소근 한다. 복소근은 대학의 핵심 개념 중 하나로,16세기 이후 복소수의 체계적인 도입과...

가우스 소거법

수학 > 선형대수학 > 방정식 해법 | 익명 | 2025-09-20 | 조회수 30

가우스 소법 ## 개요 **가스 소거법**(Gaussianination)은 선형 연립방정을 풀기 위한 가장 대표적인 알고리즘 중 하나로, 행렬을 **기약 사다리꼴**(reduced row echelon form) 또는사다리꼴row echelon form)로 변환하여 해를 구하는 방법이다. 이 방법은 독일의 수학자 카를 프리드리히 가우스의 이름을 따 명명...

극형식

수학 > 복소수 > 극형식 | 익명 | 2025-09-20 | 조회수 28

# 극형식 ##요 복소수는 실수와 허수부 구성된 수 체계, $ z = a + bi $단, $ i = \sqrt{-1 $)의 형태 나타낼 수 있다. 표현을 **직교형식**(또는 대수형식)이라 한다. 그러나 복소수를 평면 상의 점이나 벡터로 해할 때, 직교형식 외에도 **극형**(polar form)이라는 또 다른 표현 방식이 유용하다. 극형식은 복소수를 ...

RC 스나바

기술 > 전력전자 > 노이즈 제거 | 익명 | 2025-09-19 | 조회수 27

# RC 스나바 개요 RC나바(Snubber)는 전력전자로에서 스위 소자(Switching)의 급격한 전압 변화(rate of voltage change, dv/dt)를 억제하고, 스위칭 시 발생하는 전압 서지(Voltage Spike) 고주파 노이즈 제거하기 위해 사용되는 수동 소자 기반의 보호 회로이다. RC 스나바는 저항(Resistor, R)과...

실수

과학 > 수학 > 통계 | 익명 | 2025-09-19 | 조회수 37

# 실수 개요 실(實數, Real)는 수학 특히 해석학 통계학에서 가장초적이면서도 핵심적인 수 체계 중 하나이다 실수는 수선 위의 모든 점에 일대일응하는 수의합으로 정의되며,리수와 무리수를 모두 포함한다. 통학에서는 데이터의 측정값, 확률, 평균, 분산 등 대부분의 수치적가 실수로 표현되기 실수 체계의 이해는 통계적 분석의 기초가 된다. 실수는 자연...

데이터 변동성

과학 > 통계학 > 기술통계 | 익명 | 2025-09-19 | 조회수 41

# 데이터 변동성 ## 개요 데이터 변동성(Data Variability)은 통계학에서 데이터합 내 개별 관측값 평균 또는 중심 경향값에서 얼마나 퍼져 있는지를 나타내는 핵심 개념이다. 변동성은 데이터의 일관성, 안정성, 예측 가능성을 평가하는 데 중요한 역할을 하며, 기술통계(descriptive statistics)의 핵심 요소 중 하나이다. 변동성...

매치드 필터링

기술 > 데이터분석 > 신호처리 | 익명 | 2025-09-19 | 조회수 32

# 매치드 필링 매치드 필터링(Matched Filtering)은 신호처리 분야에서 매우 중요한법 중 하나로, 특히 잡이 존재하는 환경에서 특정 신호를 최적의 방식으로 검출하기 위해 사용된다. 이 기법은 통신, 레이더, 음성 인식,료 영상 처리 등 다양한 분야에서 널리 활용되며, 신호 대 잡음비(SNR, Signal-to-Noise Ratio)를 최대화하...

회귀모형 적합도

과학 > 통계학 > 회귀분석 | 익명 | 2025-09-19 | 조회수 37

# 회귀모형 적합도 회귀모형 적도(Regression Model Fit)는 통계학에서 회귀분석을 구축한 모형이 관측된 데이터를 얼마나 잘 설명하는지를 평가하는 척도이다. 적합도 분석은 모형의 유용성과 신뢰성을 판단하는 데 핵심적인 역할을 하며, 모형이 데이터에 과적합(overfitting)되었는지, 또는 부적합(underfitting) 상태인지 진단하는 ...

기울기 점근선

과학 > 수학 > 미적분학 | 익명 | 2025-09-19 | 조회수 35

# 기울기 점선 ## 개 기울기 점근선(영어: slant asymptote 또는 oblique asymptote)은 유함수의 그래프가 무한대 방향으로 접근만 결코 만나 않는 직선 중, 수평선이 기울기를 가진 직선을 의미한다. 일반적으로, 유리함수의 분모보다 분자의 차수가 **정확히 1차수 더 클 때** 기울기 점근선이 존재한다. 이 점근선은 함수의 전반...

회귀 방정식

교육 > 수학 > 통계 | 익명 | 2025-09-19 | 조회수 29

# 회귀 방정식 개요 **회귀 방식**(Regression Equation)은 통학에서 두 개 이상의 변수 간의 관계를 수학적으로 모델링하여, 한 변수의 값을 다른 변수의 값을 기으로 예측하는 사용되는 수식입니다. 주로 독립 변수(independent variable)와 종 변수(dependent variable) 사이의관 관계를 분석하고, 이를 바탕...

분산

과학 > 통계학 > 회귀분석 | 익명 | 2025-09-19 | 조회수 35

# 분산 ## 개요 **분산**(Variance)은 통계학에서 데이터의 산포도, 즉 데이터 값들이 평균을 중심으로 얼마나 퍼져 있는지를 나타내는 대표적인 척도이다. 분산은 회귀분석, 추정, 가설 검정 등 다양한 통계적 분석에서 핵심적인 역할을 하며, 데이터의 변동성과 불확실성을 정량적으로 평가하는 데 사용된다. 특히 회귀분석에서는 잔차의 분산, 설명변수...

라그랑주 표기법

수학 > 수학 기호 > 라그랑주 표기법 | 익명 | 2025-09-19 | 조회수 23

# 라그랑주 표기 라그랑주 표법(Lagrange's notation)은분을 나타내는 수학 기 체계 중 하나로, 프랑스의 수학자 조제프루이 라그랑주(Joseph-Louis Lagrange의 이름을 따서 명명되었다. 표기법은의 도함수(derivative)를 표현하는 데 널리 사용되며, 특히 미적분학 교육 및 공학, 물리학 등 다양한 분야에서 흔히 등장한다. ...

매개변수 표현

수학 > 함수 > 매개변수 표현 | 익명 | 2025-09-18 | 조회수 24

# 매개변수 표현 매개변수 표현(Parameter Representation)은 수학에서 곡선,면 또는 더 복잡한 기하학적 객체를 **매개변수**(parameter)를 이용하여 정의하는이다. 이 방식은존의 함수 표현인 $ y = f(x) $ 형태로 표현하기 어려운 곡선이나 다차원 도형을 보다 유연하고 직관적으로 기술할 수 있게 해준다. 특히, 평면 곡선,...

산술 평균

수학 > 통계 > 통계 개념 | 익명 | 2025-09-18 | 조회수 27

# 산술 평균 개요 **술 평균**(arithmetic mean)은계학에서 가장 기본적이고 널리 사용되는 평균의 형태 중 하나로, 주어진 데이터 집합의 모든 값을 더 후 그 개수로 나누어 얻는 대표값이다. 일반적으로 '평균'이라고 할 때 대부분 산술 평균을 의미하며, 데이터의 중심 경향(central tendency)을 파악하는 데 핵심적인 역할을 한...

Positional Encoding

기술 > 인공지능 > 신경망 구성 요소 | 익명 | 2025-09-18 | 조회수 30

# Positional Encoding ## 개요 **Positional Encoding**(치 인코딩)은 자연 처리(NLP)야에서 사용되는 인지능 모델, 특히 **트랜스포머**(Transformer) 아키텍처에서 핵심적인 구성 요소 중입니다. 트랜포머는 순환 신경망(RNN)이나 컨볼루션 신경망(CNN)과 달리 시퀀스 데이터의 순서 정보를 내재적으로 처...

자본 축적 모델

경제학 > 거시경제학 > 성장 모델 | 익명 | 2025-09-17 | 조회수 30

# 자본 축적 모델 자본 축적 모델(Capital Accumulation Model)은 거시경제학에서 경제 성장의 핵심 요인 중 하나 **자본의 축적 과정**을 설명하는 이론적 프레임워크이다. 이 모델은 국가의 생산 능력 향상과 장기적인 국민소득 증가가 자본 형성에 어떻게 의존하는지를 분석하며, 특히 생산요소 중 **물적 자본**(Physical Capi...