검색 결과

"함수"에 대한 검색 결과 (총 112개)

커밋

기술 > 소프트웨어 > 버전관리 | 익명 | 2025-07-19 | 조회수 9

# 커밋 ## 개요 **커밋**(Commit)은 소프트웨어 개발에서 버전 관리 시스템(VCS)을 통해 코드 변경 사항을 저장하고 추적하는 핵심 개념입니다. 주로 Git, Mercurial, Subversion(SVN) 등의 도구에서 사용되며, 프로젝트의 이력(Commit History)을 형성합니다. 커밋은 단일 작업 단위로, 개발자가 코드를 수정한 ...

Perl

기술 > 프로그래밍 > 언어 | 익명 | 2025-07-18 | 조회수 9

# Perl ## 개요 Perl은 1987년에 라리 월(Larry Wall)이 개발한 프로그래밍 언어로, 텍스트 처리와 시스템 관리에 특화된 고급 스크립팅 언어이다. 초기에는 UNIX 환경에서의 텍스트 분석을 위한 도구로 설계되었으나, 현재는 웹 개발, 네트워크 프로그래밍, 데이터 분석 등 다양한 분야에서 활용되고 있다. Perl은 유연한 문법과 강력한 ...

완전 연결 층

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-17 | 조회수 7

# 완전 연결 층 ## 개요 완전 연결 층(Fully Connected Layer)은 인공지능(AI) 분야에서 신경망(Neural Network)의 핵심 구성 요소 중 하나로, 입력 데이터와 출력 데이터 간의 복잡한 관계를 모델링하는 데 사용됩니다. 이 층은 전층 연결 구조를 가지며, 모든 노드가 이전 계층의 모든 노드와 연결되어 있습니다. 일반적으로 신...

스트라이드

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 15

# 스트라이드 (Stride) ## 개요 스트라이드는 데이터 과학 및 분석 분야에서 다양한 의미로 사용되는 기술적 개념입니다. 주로 배열 또는 시계열 데이터 처리에서 단계별 이동량을 나타내며, 알고리즘 효율성 향상이나 데이터 특징 추출에 활용됩니다. 본 문서에서는 스트라이드의 정의, 응용 분야, 기술적 구현 방식 등을 체계적으로 설명합니다. --- #...

백프로파게이션

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 11

# 백프로파게이션 (Backpropagation) ## 개요 백프로파게이션(Backpropagation)은 인공 신경망(Artificial Neural Network, ANN)을 학습시키는 데 사용되는 주요 알고리즘 중 하나입니다. 이 기법은 **오차 역전파**라고도 불리며, 네트워크의 출력과 실제 타겟 값 사이의 오차를 최소화하기 위해 가중치와 편향을 ...

컨볼루셔널 네트워크

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-17 | 조회수 14

# 컨볼루셔널 네트워크 ## 개요 컨볼루셔널 네트워크(Convolutional Neural Network, CNN)는 딥러닝의 주요 기술 중 하나로, 이미지 처리, 음성 인식, 자연어 처리 등 다양한 분야에서 활용됩니다. 이 네트워크는 **畳み込み(Convolutions)** 연산을 통해 입력 데이터의 특징을 자동으로 추출하고, **풀링(Pooli...

LeNet

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-16 | 조회수 15

# LeNet ## 개요/소개 LeNet은 인공지능 분야에서 가장 초기의 **컨볼루셔널 네트워크(Convolutional Neural Network, CNN)** 중 하나로, 1990년대에 Yann LeCun과 그의 연구팀이 개발한 모델이다. 주로 **손으로 쓴 숫자 인식(OCR)**을 위한 목적으로 설계되었으며, 이는 머신러닝 기술의 발전에 중요한 ...

CNN

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-16 | 조회수 20

# 컨볼루셔널 네트워크 (CNN) ## 개요 컨볼루셔널 네트워크(Convoluted Neural Network, CNN)는 인공지능(AI) 분야에서 이미지 처리 및 시각적 데이터 분석에 특화된 딥러닝 기법입니다. 1980년대 후반부터 발전해온 이 기술은 컴퓨터 비전의 혁신을 주도하며, 객체 탐지, 이미지 분류, 패턴 인식 등 다양한 응용 분야에서 핵심 역...

LSTM

과학 > 인공지능 > 머신러닝 | 익명 | 2025-07-16 | 조회수 23

# LSTM ## 개요 LSTM(Long Short-Term Memory)는 시계열 데이터 처리에 특화된 인공지능 기술로, **기존 순환 신경망(RNN)**의 한계를 극복하기 위해 1997년 Hochreiter & Schmidhuber에 의해 제안되었습니다. RNN은 단기 기억을 유지하지만 장기 의존성을 처리하는 데 어려움이 있었고, 이로 인해 **기울기...

무한극한

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 14

# 무한극한 ## 개요 무한극한(infinite limit)은 수학에서 함수의 극한이 유한한 값이 아닌 **무한대(∞)**로 발산하는 경우를 의미합니다. 이 개념은 미적분학에서 함수의 행동 분석, 점근선(漸近線) 탐구, 연속성 판단 등에 핵심적인 역할을 합니다. 무한극한은 수치적으로 정의된 극한이 아닌 **함수의 성질**을 나타내며, 이는 함수가 특정 값...

연쇄법칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 29

# 연쇄법칙 (Chain Rule) ## 개요/소개 연쇄법칙(Chain Rule)은 미적분학에서 복합함수(composite function)의 도함수를 계산하는 기본적인 규칙이다. 두 함수 $ f(x) $와 $ g(x) $가 주어졌을 때, $ h(x) = f(g(x)) $로 정의된 복합함수의 도함수는 $ h'(x) = f'(g(x)) \cdot g'(x)...

나눗셈 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 18

# 나눗셈 규칙 ## 개요 나눗셈 규칙(Quotient Rule)은 미적분학에서 두 함수의 비(商)를 미분할 때 사용하는 기본적인 도함수 계산법이다. 이는 분자와 분모가 각각 다른 함수로 구성된 경우, 단순히 분자와 분모를 따로 미분한 후 나누는 것이 아니라, 특정 공식을 통해 정확하게 도함수를 구할 수 있도록 한다. 본 문서에서는 나눗셈 규칙의 ...

곱셈 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 14

# 곱셈 규칙 (Product Rule) ## 개요 곱셈 규칙은 미적분학에서 두 함수의 곱을 미분할 때 사용하는 기본적인 도함수 계산법이다. 이 규칙은 단순히 각 함수를 별도로 미분한 후 곱하는 것이 아니라, **첫 번째 함수의 도함수와 두 번째 함수의 곱**과 **첫 번째 함수와 두 번째 함수의 도함수의 곱**을 더해야 한다는 점에서 중요하다. 이 규칙...

극한

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 17

# 극한 ## 개요 극한(limit)은 수학에서 함수의 행동을 분석하는 데 핵심적인 개념으로, 특정 점에 가까운 입력값에 대한 출력값의 추세를 나타냅니다. 미적분학의 기초가 되며, 도함수와 적분의 정의에 필수적이며, 물리학, 공학 등 다양한 분야에서 응용됩니다. 극한은 수렴과 발산을 이해하는 데 중요한 역할을 하며, 함수의 연속성, 미분 가능성 등...

적분법

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 21

# 적분법 ## 개요 적분법(integral calculus)은 미적분학의 핵심 분야로, 함수의 **적분**을 연구하는 수학 이론이다. 주로 곡선 아래의 넓이, 부피, 누적량 등을 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 적분은 미분과 반대되는 개념으로, **미분 방정식**을 해결하거나 함수의 원시함수를 찾는 데 필수적...

미분법

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 23

# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...

피타고라스 정리

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 7

# 피타고라스 정리 ## 개요 피타고라스 정리는 직각삼각형의 세 변 사이의 관계를 설명하는 기하학적 정리로, 수학 역사상 가장 유명한 공식 중 하나이다. 이는 "직각삼각형에서 빗변의 제곱은 다른 두 변의 제곱의 합과 같다"는 내용을 담고 있으며, 삼각법, 물리학, 공학 등 다양한 분야에 응용된다. 정리는 고대 그리스 수학자 피타고라스(Πυθαγόρας)에...

좌표기하

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 9

# 좌표기하 ## 개요 좌표기하는 수학의 기하학 분야에서 **직교좌표계**를 활용하여 도형을 대수적 방식으로 표현하고 분석하는 방법론이다. 이는 17세기에 르네 드카르트(René Descartes)가 고안한 해석기하(Analytic Geometry)의 핵심 개념으로, 기존의 순수 기하학과 대수학을 통합하여 수학적 문제를 해결하는 데 중요한 도구로 사용된다...

대수학

교육 > 수학 > 대수학 | 익명 | 2025-07-16 | 조회수 12

# 대수학 ## 개요 대수학(algebra)은 수학의 한 분야로, 수와 기호를 사용하여 수량 간의 관계를 추상화하고 일반화하는 학문이다. 이는 단순한 계산을 넘어 변수, 방정식, 함수 등 복잡한 구조를 탐구하며, 과학, 공학, 컴퓨터 과학 등 다양한 분야에서 필수적인 도구로 활용된다. 대수학은 고대부터 현대까지 수많은 수학자들의 연구를 통해 발전해왔으며,...

정수

교육 > 수학 > 기초수학 | 익명 | 2025-07-15 | 조회수 16

# 정수 ## 개요 정수는 수학에서 가장 기본적인 숫자 집합 중 하나로, **0과 양의 정수, 음의 정수**를 포함합니다. 정수는 자연수(1, 2, 3, ...)와 그 반대 방향의 음의 정수(-1, -2, -3, ...) 그리고 0을 모두 포함하는 집합입니다. 이 문서에서는 정수의 정의, 성질, 역사적 배경, 연산 규칙, 실생활 적용 등을 체계적으로 탐구...