검색 결과

"물리학"에 대한 검색 결과 (총 146개)

비유클리드 기하학

교육 > 수학 > 비유클리드 기하학 | 익명 | 2025-09-16 | 조회수 19

# 비유클리드 기학 ## 개요 비유클드 기하학(非Euclidean幾何學,-Euclidean Geometry)은 유클리 기하학의 평행선 공리를 따르지 않는 기하학 체계를 의미한다. 고전적인 유클리드 기하학 평면 위에서 직선과 각, 도형의 성질을 다루며, 특히 **"한 직선 밖의 한 점을 지나면서 그 직선과 평행한 직선은 오직 하나만 존재한다"** 는 제5...

임계점

수학 > 미적분학 > 미분학 | 익명 | 2025-09-16 | 조회수 57

# 임계점 ## 개요 임계점(臨界, 영어: critical point) 미분학에서 함수의 국소적 성질을 분석하는 데 핵심적인 개념이다. 함수의 그래프에서 극값(극대 또는 극소)이 존재할 수 있는 후보 지점으로, 함수의 변화율이 0이 되거나 미분이 존재하지 않는 점을 의미한다. 임계점은 함수의 증가와 감소가 전환되는 지점, 즉 극값을 찾는 데 매우 중요한...

의료 영상

기술 > 의료기술 > 의료 영상 | 익명 | 2025-09-15 | 조회수 25

# 의료 영상 의료 영상(Medical Imaging)은체 내부의 구조와 기능을 비침습적으로 시각화하여 질병 진단, 치료 계획 수립, 치료 경 관찰 등을 지원하는 핵심적인 의료기술 분야이다. 이 기술은 현대 의학에서 진단의 정확성을 크게 향상시켰으며, 다양한 질환의 조기 발견과 정밀한 치료를 가능하게 한다. 의료 영상 기술은 물리학, 공학, 컴퓨터 과학,...

편미분방정식

수학 > 미적분학 > 편미분방정식 | 익명 | 2025-09-14 | 조회수 21

# 편미분방정식 ## 개요 편미방정식(Partial Differential Equation,DE)은 두 개 이상의립 변수를 갖는와 그 함수의 **편미분**(partial derivative)들 사이의 관계를 나타내는 수학적 방정식입니다. 일반 미분방정식(ODE)이 하나의 독립 변수(예: 시간)에 대한 함수의 도함수를 다룬다면, 편미분방정식은 공간과 시간...

행렬-벡터 연산

기술 > 데이터과학 > 행렬-벡터연산 | 익명 | 2025-09-13 | 조회수 29

# 행렬-벡터 연산 행렬-벡터산은 선형대수의 핵심 개념 중 하나로, 데이터과학 머신러닝, 컴퓨터 그래픽스, 물리학 등 다양한 분야에서 광범위하게 활용됩니다. 특히 고차원 데이터를 처리하고 변환하는 데 있어 행렬과 벡터의 연산은 계산 효율성과 수학적 표현의 간결성을 제공합니다. 본 문서에서는 행렬-벡터 연산의 정의, 기본 연산 종류 계산 방법, 활용 사례 ...

고효율 운전

기술 > 에너지 > 에너지 효율 | 익명 | 2025-09-13 | 조회수 25

# 고효율 운전 ## 개요 **고효율 운전**(High-efficiency driving)은 자동차의 연료 소비를 최소화하고, 배출가스를 줄이며, 동시에 안전하고 경제적인 운전을 실현하는 운전 기술과 전략의 집합을 의미한다. 이는 단순히 경제성을 높이는 것을 넘어, 환경 보호와 에너지 자원의 지속 가능한 사용에 기여하는 중요한 실천 방법이다. 특히, 전...

변곡점

수학 > 미적분학 > 미분학 | 익명 | 2025-09-13 | 조회수 30

# 변곡점 ## 개요 변곡점(變曲點, inflection point)은 함수 그래프가 **오목에서 볼록으로**, 또는 **볼록에서 오목으로** 변하는 지점을 의미한다. 즉, 함수의 **곡률**(curvature)이 부호를 바꾸는 점으로, 그래프의 형태가 변하는 전환점이라 할 수 있다. 변곡점은 미분학에서 함수의 그래프를 분석하고 해석하는 데 중요한 역할...

전자재료

기술 > 재료공학 > 전자재료 | 익명 | 2025-09-13 | 조회수 25

# 전자재료 ## 개요전자재료(電子材料, Electronic Materials)는 전자기기 및 전자회로의 핵심 구성 요소로 사용되는 물질을 의미한다. 이들은 전기적 신호의 생성, 전달, 증폭, 저장, 처리 등을 가능하게 하며, 반도체, 도체, 절연체, 유전체, 자성재료 등 다양한 물리적 특성을 가진 재료들이 포함된다. 전자재료는 현대 정보통신기술(ICT)...

범주론

수학 > 범주론 > 기초 개념 | 익명 | 2025-09-12 | 조회수 31

범주론 ## 개요 범주론(Category Theory)은 수학의 분야로, 다양한 수학적 구조와 그 사이의 관계를 추상적으로 다루는 이이다. 1940년대에 샘UEL 에일렌버그(Samuel Eilenberg와 새먼 매클레인(Saunders Mac Lane)에 의해 위상수학과 호몰로지 대수학의 개념을 일반하기 위해 도입되었으며 오늘날에는 수학 전반은 물론 컴...

벡터 연산

기술 > 데이터과학 > 벡터연산 | 익명 | 2025-09-11 | 조회수 26

# 벡터 연산 벡터 연산(Vector Operation)은 데이터과학, 기계학습, 물리학, 컴퓨터 그래픽스 등 다양한 분야에서 핵심적인 역할을 하는 수학적 도구입니다. 특히 고차원 데이터를 처리하는 데이터과학에서는 벡터를 통해 데이터 포인트를 표현하고, 이를 기반으로 유사도 계산, 차원 축소, 모델 학습 등의 작업을 수행합니다. 본 문서에서는 벡터 연산의...

GPU

기술 > 하드웨어 > 그래픽 처리장치 | 익명 | 2025-09-11 | 조회수 34

# GPU ## 개요 **GPU**(Graphics Processing Unit 그래픽 처리장치)는 이미지 비디오, 애니메이션 등 그래픽 데이터를 빠르고 효율적으로 처리하기 위해 설계된 전용 전자 회로입니다. 초기에는 주로 컴퓨터 그래픽스와 게임 렌더링에 사용되었지만, 현재는 인공지능(AI), 과학 계산, 데이터 분석, 블록체인 등 다양한 분야에서 중요...

# 피카르-린델뢰프 정리 ## 개요 피카르-린델뢰프리**(Picard–Lindelöf Theorem)는 상미분방정식(Ordinary Differential Equation, ODE)의 해가 존재하고 유일함을 보장하는 중요한 정리로, 초기값 문제의 해에 대한 존재성과 유일성에 관한 기본적인 결과를 제공한다. 이 정리는 19세기 말 프랑스의 수학자 **에밀...

토폴로지

수학 > 위상수학 > 기본 개념 | 익명 | 2025-09-09 | 조회수 25

토폴로지 ## 개요 **토폴로지**(topology)는 수학의 한 분야로, 기하학적 도형이나 공간의 **연속적인 변형** 아래에서 보존되는 성질을 연구하는 학문입니다. 즉, 늘이거나 구부리거나 비틀어도 형태가 바뀌지 않는 **위상적 성질**(topological properties)을 다룹니다. 예를 들어, 컵과 도넛은 서로 다른 모양이지만, 토폴로지에...

초기값 문제

수학 > 미분방정식 > 경계 및 초기값 문제 | 익명 | 2025-09-07 | 조회수 37

# 초기값 문제 ## 개요 **초기값 문제**(Initial Value, IVP)는 미분방정식 이론에서 중요한 주제 중 하나로, 주어진 미분방정식과 특정한 초기 조건을 만족하는 해를 찾는 문제를 말한다. 일반적으로 시간에 따라 변화하는 동역학적 시스템의 행동을 모델링할 때 사용되며, 물리학, 공학, 생물학, 경제학 등 다양한 분야에서 널리 활용된다. ...

경계값 문제

수학 > 미분방정식 > 경계 및 초기값 문제 | 익명 | 2025-09-07 | 조회수 38

# 경계값 문제 ## 개요 **경계값 문제**(Boundary Value Problem, BVP)는 미분방정식의 해를 구하는 과정에서, 특정 구간의 **경계**(boundary)에서 해가 만족해야 하는 조건을 제시하는 수적 문제이다. 이는 **초기값 문제**(Initial Value Problem, IVP)와 대비되는 개념으로, 초기값 문제는 독립변수의...

다변수 체인 규칙

수학 > 다변수 미적분학 > 체인 규칙 | 익명 | 2025-09-07 | 조회수 30

# 다변수 체인 규칙 다변수 체인 규칙(Multivariable Chain Rule)은 다변수 미적분학에서 중요한 도구 중 하나로, **여러 변수에 의존하는 함수의 합성 함수를 미분할 때 사용되는 법칙입니다. 이 규칙은 단일 변수 함수의 체인 규칙을 다변수 함수로 확장한 것으로, 물리학, 공학, 경제학 등 다양한 분야에서 함수의 변화율을 분석할 때 핵심적...

라플라스 방정식

수학 > 미적분학 > 타원형 방정식 | 익명 | 2025-09-07 | 조회수 30

# 라플라스 방정식 라플라스 방정식(Laplace's Equation)은 수학, 특히 편미분방정식과 수리물리학에서 매우 중요한할을 하는 타원형 편미분방정식의 대표적인 예입니다. 이 방정식은 정적인리적 현상, 즉 시간에 따라 변하지 않는 평형 상태를 기술하는 데 널리 사용되며, 전기학, 중력장, 유체역학, 열전도 등 다양한 분야에서 등장합니다. 라플라스 방...

헤시안 행렬

기술 > 수학 > 선형대수학 | 익명 | 2025-09-07 | 조회수 33

# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...

복소근

수학 > 복소해석학 > 복소수 해 | 익명 | 2025-09-07 | 조회수 31

# 복소근 **복소근**(complex root)은 복소수 범위에서 특정 방식의 해가 되는 복소수를 의미한다. 특히 다항방정식, 지수방정식, 삼각함수 방정식 등에서 실수 범위를 넘어서 해를 구할 때 등장하며, 복소해석학에서 중요한 개념 중 하나이다. 복소근은 실수부와 허수부로 구성된 복소수 형태로 표현되며, **대수학의 기본정리**(Fundamental ...