# 정적 타입 추론 정적 타입 추론(Static Type Inference)은 프로그래밍 언어에서 변수나 표현식의 타입을 **런타임이 아닌 컴파일 타임에 자동 결정하는 기법**을 말합니다 이 기법은 프로그머가 타입을 명시하지 않아도, 코드의 구조와 사용 패턴을 분석하여 각 식별자의 타입을 추론함으로써 타입 안정성과 코드결성을 동시에 달성할 수 있도록 도와...
검색 결과
"덧셈"에 대한 검색 결과 (총 83개)
# 분수 ## 개요 분수(分數, fraction)는 하나의 수를 다른 수로 나눈 형태로 표현한 수 체계의 일종으로, 전체 중에서 일부를 나타낼 때 사용된다. 수학에서 분수는 유리수(rational number)의 기본 표현 방식 중 하나이며, 일상생활에서도 비율, 할인, 요리 레시피 등 다양한 상황에서 활용된다. 분수는 일반적으로 **분자**(numer...
# 공통 분모## 개요 **공통모**(Common Denominator)는수의 덧셈과 뺄셈을 수행할 때 필수적인 개념으로, 두 개 이상의 분수가 같은 분모를 가지도록 조정하는 과정에서 사용됩니다. 분모가 서로 다른 분수는 직접 계산할 수 없기 때문에, 공통 분모를 찾아 각 분수를 동등한 값으로 변환한 후 연산을 수행해야 합니다. 이 문서에서는 공통 분모의...
# 나눗셈 연산자 나눗셈 연산자는로그래밍 언어에서 두 수를 나누는 데 사용되는 산술 연산자의 일종으로, 주로 `/` 기호 표현됩니다. 이 연산 수학적 나눗셈을 프로그램 내에서 수행할 수 있게 하며, 다양한 데이터 타입과 언어별 특성에 따라 그 동작 방식이 다릅니다. 본 문서에서는 나눗셈 연산자의 기본 개념, 사용법, 언어별 차이점, 그리고 주의사항에 대해...
# 행렬-벡터 연산 행렬-벡터산은 선형대수의 핵심 개념 중 하나로, 데이터과학 머신러닝, 컴퓨터 그래픽스, 물리학 등 다양한 분야에서 광범위하게 활용됩니다. 특히 고차원 데이터를 처리하고 변환하는 데 있어 행렬과 벡터의 연산은 계산 효율성과 수학적 표현의 간결성을 제공합니다. 본 문서에서는 행렬-벡터 연산의 정의, 기본 연산 종류 계산 방법, 활용 사례 ...
# Basic Linear Algebra Subprograms **Basic Linear Algebra Subprograms**(BL)는 선형대수 계을 위한 기본적인 연산들을 표화한 인터페이스 사양이다. BLAS는 벡터와렬의 덧셈 스칼라 곱, 내적, 행렬-벡터 곱, 행렬-행렬 곱 등과 같은 수치 선형대수의 핵심 연산들을 정의하며, 과학 계산, 머신러닝, ...
# 벡터 연산 벡터 연산(Vector Operation)은 데이터과학, 기계학습, 물리학, 컴퓨터 그래픽스 등 다양한 분야에서 핵심적인 역할을 하는 수학적 도구입니다. 특히 고차원 데이터를 처리하는 데이터과학에서는 벡터를 통해 데이터 포인트를 표현하고, 이를 기반으로 유사도 계산, 차원 축소, 모델 학습 등의 작업을 수행합니다. 본 문서에서는 벡터 연산의...
# 계산 그래프 **계산 그래프Computational Graph)는 수학적 연산이나 함수의 계산 과정을 **방향성 그래프**(Directed Graph) 형태로 표현한 자료 구조입니다. 이는 인공지능, 특히 딥러 모델의 학습 과정에서 **전파**(Backpropagation)를율적으로 수행하기 위해 핵심적인 역할을 합니다. 계산 그래프는 입력값에서 출력...
# SSE4 **SSE4**(Streaming SIMD Extensions 4) 인텔(Intel)과 AMD가 개발한 x86 아키텍처 기반 프로세서에서 사용되는 SIMD(Single Instruction, Multiple Data) 명령어 집합의 확장판으로, 멀티미디어 처리, 영상 인코딩/코딩, 과학 계산, 압축 알고리즘 다양한 성능 집약적 작업의 효율성을...
# 정수 연산 정수 연산(Integer Arithmetic)은과학에서 정수(양의수, 음의 정수, 0)를 대상으로 수행하는 기본적인 산술 연산을 의미합니다.는 컴퓨터의 하드웨어 및 소프트웨어 전반에서 핵심적인 역할을 하며, 프로그래밍, 알고리즘 설계, 시스템 프로그래밍, 암호학 등 다양한 분야에 응용됩니다. 정수 연산은 실수 연산과 달리 부동소수점 오차가 ...
# SSE2 **SSE2**(Streaming SIMD Extensions 2)는 인텔이 2001년에 펜티엄 4 프로세서와 함께 도입한 SIMDingle Instruction, Multiple Data)령어 집합의 확장판입니다. SSE2는 이전의 SSE(SSE1)를 보완하고, MMX 및 x87 부동소수점 연산의 많은 제한을 극복하기 위해 설계되었으며, 특...
# 타입 추론 타입 추론(Type Inference)은 프로그래밍 언어의 **타입 시스템**에서, 변수나 표현식의 타입을 **명시적으로 선언하지 않아도** 그 값을 기반으로 자동으로 타입을 결정하는 기능입니다. 이는 코드의 가독성과 생산성을 높이면서도 정적 타입 시스템의 안정성과 오류 검출 능력을 유지할 수 있도록 도와줍니다. 타입 추론은 주로 정적 타입...
# Field-Programmable Gate Array ## 개요 **Field-Programmable Gate Array**(FPGA 현장 프로그머블 게이트레이)는 사용자가 소프트웨어 통해 하드웨어 구조를 재구성할 수 있는 반도체 장치입니다. FPGA는통적인 고정 기능의 집적회로(IC)와 달리, 출하 후에도 사용자가 원하는 논리 회로를 프로그래밍하여...
# 오버레이 분석 오버레이 분석(Overlay Analysis은 지리정보시스템(GIS, Geographic Information System)에서 핵심적인 공간분석 기법 중 하나로, 두 개 이상의 공간 레이어(지리 데이터 층)를 겹쳐서 새로운 공간 정보를 도출하는 방법입니다. 기법은 서로 주제의 지리 데이터를 통합하여 공간적 관계를 이해하고, 복합적인 의...
# 루프 벡터화 ## 개요 **루프 벡터화**(Loop Vectorization)는 컴파일러 최적화 기법 중 하나로, 반복문(루프) 내에서되는 연산을 벡터 연산으로 변환함으로써 프로그램의 실행 속도를 향상시키는 기술이다. 이 기법은 현대 CPU가 제공하는 SIMD(Single Instruction, Multiple Data) 아키텍처를 활용하여, 여러 ...
# 변수분리법 변수분리법(Separation of)은 미분방정식 풀기 위한 가장 기초적이면서도 강력한 해법 중 하나로, 독립변수와 종속변수를 각각의 항으로 분리하여 양변을 적분함으로써 해를 구하는 방법이다. 이 방법은 특히 **일계 상미분방정식**(ODE)과 일부 **편미분방정식**(PDE)에 널리 사용되며, 해석적 해를 구할 수 있는 경우가 많아 물리학...
# 로그함수 로그함수(logarithmic function) 지수함수의 역함로 정의되는 수학적 함수로, 수학 전반과 과학, 공학, 경제학 등 다양한 분야에서 중요한 역할을 한다. 로그함수는 큰 수를 다루거나 지수적인 증가·감소를 분석할 때 유용하며, 특히 데이터의 스케일을 조정하거나 복잡한 곱셈을 덧셈으로 변환하는 데 자주 사용된다. 이 문서에서는 로그함...
# 반환값 ## 개 **반환값**(return value)은 프로그래밍에서 함수(function)가 실행을 마친 후 호출한 위치로 전달하는 데이터를 의미합니다. 함수는 특정한 작업을 수행하고 그 결과를 반환값으로려줌으로써, 프로그램의 다른 부분에서 해당 결과를 활용할 수 있도록 합니다. 반환값은 프로그래밍의 핵심 개념 중 하나로, 코드의 재사용성과 모듈...
# FPGA ## 개요 **PGA**(Field-Programmable Gate Array, 현장 프래머블 게이트 어레이)는 사용자가 필요에 따라 하드웨어 수준에서 논리 회로를 재구성할 수 있는도체 장치입니다.는 고정된능을 가진 전통적인 ASIC(Application-Specific Integrated Circuit)과 달리, 프로그래밍을 통해 다양한 ...
# 사칙연산 ## 개요 **사칙연산**(四演算)은 수학의 기본이 되는 네 가지 연산인 **덧셈**(加法), **뺄셈**(減法), **셈**(乘法), **나눗셈**(除法) 총칭하는 용어입니다. 이 네 가지 연은 수를 다루는 모든 수학적 활동의 기초가 되며, 초등 수학부터 고등 수학, 그리고 실생활의 계산 문제까지 널리 사용됩니다. 사칙연산은 자연수, 정수...