# 벡터 연산 벡터 연산(Vector Operation)은 데이터과학, 기계학습, 물리학, 컴퓨터 그래픽스 등 다양한 분야에서 핵심적인 역할을 하는 수학적 도구입니다. 특히 고차원 데이터를 처리하는 데이터과학에서는 벡터를 통해 데이터 포인트를 표현하고, 이를 기반으로 유사도 계산, 차원 축소, 모델 학습 등의 작업을 수행합니다. 본 문서에서는 벡터 연산의...
검색 결과
"선형대수"에 대한 검색 결과 (총 37개)
# L∞ 노름 ## 개요 L∞ 노름-infinity norm), **최대 노름**(maximum norm), **균등 노름**(uniform norm), **서프리멈 노름**(supremum norm)은 벡터 공간 또는 함수 공간에서 벡터나 함수의 크기를 측정하는 방법 중 하나로, 선형대수학과 함수해석학에서 중요한 역할을 한다. L∞ 노름은 벡터의 성분...
# FORTRAN 7 ## 개요 FORTRAN 7은 **FORTRAN**(****mula ****slation의 약자) 계열의 프로그래밍어 중 하나로, 1978년에 공식적으로 미국국립표준협회(American National Standards, ANSI)에 의해 표준화된 버전. 공식 명칭은 **ANSI X3.9-197**이며, 일반적으로 **FORTRAN...
# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...
# NumPy NumPy( erical Python의 약자)는 파이썬에서 과학적 계산을 수행하기 위한 핵심 라이브러리로, 대규모치 데이터를 효율적으로 처리할 수 있는 다차 배열 객체(`nd`)와 이를 다루기 위한 다양한 수학 함수를 제공합니다. 특히 데이터과학, 머신러닝, 물리학, 공학 등 다양한 분야에서 기본 도구로 사용되며, Pandas, SciPy,...
# 복합함수 복합함수(複合函數, Composite Function)는 두 개 이상의 함수를 결합하여 만든 새로운 함수를 의미합니다. 수학, 특히 함수론에서 매우 개념으로, 함수의 출력값을 다른의 입력값으로 사용함으로써 함수 간의 관계를 표현하고 분석하는 데 핵심적인 역할을 합니다. 복합함수는 미적분학, 해석학, 선형대수학, 컴퓨터 과학 등 다양한 분야에서...
# 대입법 **대입법**(代入法, Substitution Method)은 방정식 또는 연립방정식을 풀기 위한 기본적이고 효과적인 대수적 기 중 하나입니다. 두 개 이상의 미수가 포함된 연립일차방정식을 해결할 때 자주 사용되며, 한 변수를 다른 변수로 표현하여 다른 방정식에 대입함으로써지수의 수를 줄이고 문제를 단순화하는 방식으로 작동합니다. 이 방법은 중...
# 미분방정식 미분방정식(Differential Equation은 하나 이상의 변수에 대한 함수와 그 함수의 도함수(미분)가 포함된 방정식을 의미합니다. 이 자연과학, 공학, 경제학, 생물학 등 분야에서 시스템의 동적 변화를 모델링하는 데 핵심적인 도구로 사용됩니다. 미분방정식을 통해 물체의 운동, 열의 전도, 전기 회로의 거동, 인구 성장, 감염병 확산...
# 선형 연립방식 선형 연립정식(Linear System of Equations은 여러 개의 선형 방정식이 동시에 성립해야 하는 조건을 만하는 해를 찾는 수학적 문제입니다. 수치해 분야에서 선형 연립방정식은 과학, 공학, 경제학 등 다양한 분야의 모델링 문제에서 핵심적인 역할을 하며, 실제 문제 해결을 위한 수치적 알고리즘 개발의 기초가 됩니다. 이 문서...
# L2 노름## 개요 **L2 노름L2 norm) 벡터 공간에서 벡터의 크기 또는 길이를 측정하는 방법 중 하나로, 선형수학, 기계학습, 신호, 수치해 등 다양한 분야에서 널리 사용되는 중요한 개념이다. L2 노름은 유클리드 노름(Euclidean norm)이라고도 하며, 일반적인 직관적인 '' 개념과 일한다. 이 문서에서는2 노름의의, 수학 표현, 성...
# Numerical Recipes ## 개 *Numerical*는 과학 및 공학 분야에서 수치해석 알고리즘을 실제 문제에 적용하기 위한 전문 서적 시리즈이자 소프트웨어 라이브러리의 총체를 의미한다. 1986년 최초로 출간된 이래로 물리학, 천문학, 공학, 생물정보학 등 다양한 분야의 연구자와 엔지니어들에게 널리 사용되어 왔으며, 특히 수치적 계산의 이...
# BLAS ## 개요 **BLAS**(Basic Linear Algebra Subprograms, 기본 선형대수 서브프로그램)는 벡터와 행렬 연산을 위한 표준 인터페이스를 정의한 소프트웨어 라이브러리입니다. 주로 수치해석, 과학기술 계산, 머신러닝, 고성능 컴퓨팅(HPC) 분야에서 핵심적인 역할을 하며, 선형대수 계산의 효율성과 성능을 극대화하는 데 ...
# NumPy ## 개요 **NumPy**(Numerical Python)는 파이썬에서 과학적 계산을 위한 핵심 라이브러리로, 대규모 수치 데이터를 효율적으로 처리할 수 있도록 다차 배열과 다양한 수학적 연산 기능을 제공합니다. NumPy는 데이터 과학, 머신러닝, 공학, 물리학 등 다양한 분야에서 기초 도구로 사용되며, pandas, SciPy, sc...
# SVD (특이값 분해) **SVD**(Singular Value Decomposition, 특이값 분해)는 선형대수학에서 행렬을 특정한 형태로 분해하는 기법으로, 수치해석, 데이터 과학, 기계학습, 신호 처리 등 다양한 분야에서 핵심적인 역할을 하는 수학적 도구입니다. SVD는 임의의 실수 또는 복소수 행렬을 세 개의 특수한 행렬의 곱으로 분해함으로써...
# LAPACK ## 개요 **LAPACK**(Linear Algebra PACKage)은 과학 계산 및 공학 분야에서 널리 사용되는 고성능 수치 선형대수 라이브러리입니다. 주로 행렬 연산, 선형 연립방정의 해법, 고유값 문제, 특이값 분해(SVD), 최소자승법 문제 등을 효율적으로 해결 위해 설계되었습니다. LAPACK은 FORTRAN 77로 작성으며...
과학 계산 ## 개요 **과학 계산**(Scientific Computing)은 수학, 물리, 공학,물학 등 다양한 과 분야의 문제를 해결하기 위해 컴퓨터를 활용하는 학문 분야. 이는 복한 수학적 모을 수치적으로 해석하고, 실제 현상을 시뮬레이션하거나 예측하는 데 중심적인 역할을 한다. 과학 계산은 이론적 분석과 실험적 관찰에 더해 **제3의 과학 방법...
# 삼각 부등식 ## 개요 **삼각 부등식**(Triangleequality)은 선대수학에서 벡 공간의 노름orm)이 만해야 하는 핵심 성질 중 하나로, 두 벡터의 합의 크기가 각 벡터의 크기의 합보다 작거나 같다는 원리를 수학적으로 표현한 것이다. 이 부등식은 기하학적 직관에서 유래되었으며, 삼각형에서 임의의 두 변의 길이의 합이 세 번째 변의 길이보...