검색 결과

"복소수"에 대한 검색 결과 (총 42개)

RLC 회로

기술 > 전자공학 > 회로 분석 | 익명 | 2025-10-05 | 조회수 26

RLC 회로## 개요 C 회로는 **항**(Resistor, R), **인덕터**(Inductor, L), **커패시터**(Capacitor, C) 구성된 전기 회로 말하며, 전자공학에서 매우 중요한 역할을 선형 동적 회로의 일종이다. 이 회로는 교류(AC) 및 직류(DC) 전원에 따라 다양한 동작 특성을 보이며, 특히 **진**(resonance) 현상...

QR 분해

기술 > 수치계산 > 선형 대수 | 익명 | 2025-10-04 | 조회수 26

# QR 분해 ## 개요 QR 분해(QR Decom)는 선형 대수에서 행렬 직교행렬(Orth Matrix)과 상각행렬(Upperangular Matrix)의 곱으로 분해하는 기법이다. 주어진 $ m \ n $ 실수 또는소수 행렬 $ A $에 대해 다음과 표현할 수 있다$$ A = QR $$ 여기서: - $ Q $는 m \times m $ 크기의 **직...

AOCL

기술 > 소프트웨어 > 하드웨어 최적화 라이브러리 | 익명 | 2025-09-30 | 조회수 24

# AOCL **AMD Optimizing CPU Libraries**(AOCL)는 AMD 제공하는 고성능 컴퓨(HPC), 머신러닝, 과학 계산 및 데이터 분석 애플리케이션 성능을 최적화하기 위한 소프트웨 라이브러리 모음입니다. AOCL AMD의 x86-4 아키텍처 기반 프로세서, 특히 **EPYC**, **Ryzen**, **Threadripper** ...

회로 이론

기술 > 전자공학 > 회로 분석 | 익명 | 2025-09-27 | 조회수 28

# 회로 이론 ## 개요 **회로 이**(Circuit Theory)은 전적 현상을 이해하고 전기 회의 동작을석하기 위한 기초적인 이론 체계이다. 전자공학, 전기공학, 통신공학 등 다양한 공학 분야의 근간을 이루며, 실제 전자기기 설계에서부터 전력 시스템 운영에 이르기까지 폭넓게 적용된다. 회로 이론은 전류, 전압, 저항, 인덕턴스, 정전용량 등과 같은...

무리식

수학 > 대수학 > 무리식 | 익명 | 2025-09-23 | 조회수 30

# 무리식 무리식(無理式, irrational expression)은 수학, 특히 대수학에서 다루는 중요한 개념 중 하나로, **근호(√)를 포함하면서 그 안의 식이 완전제곱이 아닌 경우**에 해당하는 대식을 말한다. 무리식 유리식과비되며, 일반적으로 실수 범위에서 정의되지만, 특정 조건에서 복소수로 확장되기도 한다. 이 문서에서는 무리식의 정의, 성질,...

덧셈

수학 > 기초수학 > 덧셈 | 익명 | 2025-09-21 | 조회수 29

# 덧셈 ## 개요 **덧셈**(加法 addition)은 수학 가장 기본적인 연산 중 하나로, 두 개 이상의 수를 결합하여 총합을 구하는 과정을 의미한다. 기호로는 **+**(플러스 기호)를 사용하며, 예를 들어 $ 3 + 5 = 8 $과 같이 표현한다. 덧셈은 자연수에서 시작하여 정수, 유리수, 실수, 복소수 등 다양한 수 체계로 확장되며, 일상생활뿐...

전기회로 해석

공학 > 전자공학 > 회로 분석 | 익명 | 2025-09-20 | 조회수 39

# 전기회로 해석 전기회로 해석은 전자공학의 핵심 분야 중 하나로, 전기적소들(저항, 커패시터, 인덕터, 전원 등)이 연결된로의 전압 전류, 전력 물리량을 계산하고 예하는 과정을 의미합니다 이는 회로계, 고장 진단, 시스템 최적화 등 다양한 응용 분야에 기초가 되며, 전기전자 기술의 발전에 필수적인 역할을 합니다. 본 문서에서는 전기회로 해석의 기본 원리...

복소평면

수학 > 복소수 > 복소평면 | 익명 | 2025-09-20 | 조회수 33

# 복소평면 ## 개요 복소평면(complex plane)은 복소수를하학적으로 표현하기 위해 사용하는 2차원 평면으로, 수학 전반에서 복소수의 성질을 시각화하고 분석하는 데 핵심적인 도구이다. 복소수는 실수부와 허수부로 구성므로, 이를 각각 평면의 가로축(실수축)과 세로축(허수축)에 대응시켜 점으로 나타낼 수 있다. 이 평면은 **가우스 평면**(Gau...

복소근

수학 > 대수학 > 복소근 | 익명 | 2025-09-20 | 조회수 35

# 복소근 ## 개요 복근(複素, Complex Root)이란정식의 해 실수부와 허부를 모두 가질 수 있는 복소수 형태 근을 의미한다. 특히 실계수 다방정식에서 실수 범위 내 해를 찾을 수 없을 때, 복수 범위로 확장하면 해가 존재하는 경우가 많으며, 이러한 해를 복소근 한다. 복소근은 대학의 핵심 개념 중 하나로,16세기 이후 복소수의 체계적인 도입과...

극형식

수학 > 복소수 > 극형식 | 익명 | 2025-09-20 | 조회수 36

# 극형식 ##요 복소수는 실수와 허수부 구성된 수 체계, $ z = a + bi $단, $ i = \sqrt{-1 $)의 형태 나타낼 수 있다. 표현을 **직교형식**(또는 대수형식)이라 한다. 그러나 복소수를 평면 상의 점이나 벡터로 해할 때, 직교형식 외에도 **극형**(polar form)이라는 또 다른 표현 방식이 유용하다. 극형식은 복소수를 ...

주기 함수

수학 > 함수 > 삼각함수 | 익명 | 2025-09-18 | 조회수 35

# 주기 함수 개요 **기 함수**(Periodic)는 수학, 특히 함수론에서 매우 중요한 개념 중 하나로, 특정 간격(주기)을 두고 그 함수값이 반복되는 성질을 가진 함수 의미한다. 주기 함수는 자연현상의 반복성, 예를 들어 파동, 진동, 계절 변화 등과 밀접한 관련이 있으며, 삼각함수는 대표적인 주기 함수의 예이다. 이 문서에서는 주기 함수의 정의...

슈뢰딩거 방정식

물리학 > 양자역학 > 기본 방정식 | 익명 | 2025-09-17 | 조회수 34

슈뢰딩거 방식 ## 개요 **뢰딩거 방정식**(Södinger Equation은 양자역학 핵심을 이루는 기본 방정식으로, 미시 세계에서 입자의 운동과 상태를 기술하는 데 사용된다. 이 방정식은 1926년 오스트리아의 물리학자 **에르빈 슈뢰딩**(Erwin Schröinger)에 의해안되었으며, 고전역학에서 뉴턴의 운동 법칙이 가지는 역할과 유사하게, ...

오차 함수

교육 > 수학 > 미적분학 | 익명 | 2025-09-17 | 조회수 37

# 오차 함수 ##요 오차 함수(Error Function)는 수학, 특히 **확론**, **통계학**, **리학**, 그리고공학**에서 매우 중요한할을 하는 특수 함수이다. 이 함수는 정규분포의 누적분함수와 밀접한 관련이 있으며, 미분방정식의 해나 확률 계산에서 자주 등장한다. 오차 함수는 주로 **가우시안 적분**(Gaussian integral)과...

복소근

수학 > 복소해석학 > 복소수 해 | 익명 | 2025-09-07 | 조회수 39

# 복소근 **복소근**(complex root)은 복소수 범위에서 특정 방식의 해가 되는 복소수를 의미한다. 특히 다항방정식, 지수방정식, 삼각함수 방정식 등에서 실수 범위를 넘어서 해를 구할 때 등장하며, 복소해석학에서 중요한 개념 중 하나이다. 복소근은 실수부와 허수부로 구성된 복소수 형태로 표현되며, **대수학의 기본정리**(Fundamental ...

양자정보과학

과학 > 물리학 > 양자물리학 | 익명 | 2025-09-06 | 조회수 47

# 양자정보과학 ## 개요 **양자정보과학**(Quantum Science, QIS)은 양역학의 원리를 정보의 저장, 전송, 처리 응용하는 학제 간 분야로, 물리학, 컴퓨터 과학, 수학, 공학 등 다양한 분야가 융합된 첨단 과학입니다. 이 분야는 고전 정보 이론의 한계를 극복하고, 양자역학의 독특한 특성인 **중첩**(superposition), **얽...

이차 인수

교육 > 수학 > 대수학 | 익명 | 2025-09-05 | 조회수 42

# 이차 인수 ## 개요 이차 인수(因數, Quadratic Factor는 **이차식**(2차 다항식)으로 구성된 인수를 의미하며, 대수학에서 다항식의 인수분해 과정에서 중요한 역할을 한다. 일반적으로 이차 인수는 $ ax^2 + bx + c $ 형태의 다항식으로 표현되며, 여기서 $ a \neq 0 $이고, $ a, b, c $는 실수 또는 복소수 계...

사칙연산

수학 > 수학개념 > 연산자 | 익명 | 2025-09-04 | 조회수 37

# 사칙연산 ## 개요 **사칙연산**(四演算)은 수학의 기본이 되는 네 가지 연산인 **덧셈**(加法), **뺄셈**(減法), **셈**(乘法), **나눗셈**(除法) 총칭하는 용어입니다. 이 네 가지 연은 수를 다루는 모든 수학적 활동의 기초가 되며, 초등 수학부터 고등 수학, 그리고 실생활의 계산 문제까지 널리 사용됩니다. 사칙연산은 자연수, 정수...

SVD

기술 > 수학 > 수치해석 | 익명 | 2025-09-01 | 조회수 41

# SVD (특이값 분해) **SVD**(Singular Value Decomposition, 특이값 분해)는 선형대수학에서 행렬을 특정한 형태로 분해하는 기법으로, 수치해석, 데이터 과학, 기계학습, 신호 처리 등 다양한 분야에서 핵심적인 역할을 하는 수학적 도구입니다. SVD는 임의의 실수 또는 복소수 행렬을 세 개의 특수한 행렬의 곱으로 분해함으로써...

LAPACK

기술 > 수치계산 > 수학 라이브러리 | 익명 | 2025-08-31 | 조회수 49

# LAPACK ## 개요 **LAPACK**(Linear Algebra PACKage)은 과학 계산 및 공학 분야에서 널리 사용되는 고성능 수치 선형대수 라이브러리입니다. 주로 행렬 연산, 선형 연립방정의 해법, 고유값 문제, 특이값 분해(SVD), 최소자승법 문제 등을 효율적으로 해결 위해 설계되었습니다. LAPACK은 FORTRAN 77로 작성으며...