검색 결과

"미분"에 대한 검색 결과 (총 95개)

구조 해석

공학 > 기계공학 > 구조 해석 | 익명 | 2025-09-15 | 조회수 1

# 구조 해석 구조 해석(Structural Analysis)은 건축물, 교량, 기계 부품, 항공기, 선박 등 다양한 구조물이 외부 하중(힘,력, 진동 온도 변화 등) 받을 때 어떻게응하는지를 수적·물리적으로 분하는 기계공학 및 토목공학의 핵심 분야이다. 이는 구조물의 **강도**, **강성**, **안정성**, **내구성** 등을 평가하고, 설계 단계에...

함수

수학 > 기초수학 > 함수와관계 | 익명 | 2025-09-14 | 조회수 8

# 함수 ## 개요 **함수**(function)는 수학의 가장 기본 되는 개념 중로, 두 집합 사이의 특정한 관계를 의미한다. 간단히 말해 함수는 입력값(독립변수) 하나에 대해 정확히 하나의 출력값(종속변수) 대응시키는 규칙이다 함수는 수학 전반은 물론 물리, 공학, 컴퓨터 과학, 경제학 등 다양한 분야에서 핵심적인 역할을 한다. 함수의 개념은 17...

PID 제어기

기술 > 제어공학 > 제어기 설계 | 익명 | 2025-09-14 | 조회수 11

# PID 제어기 ## 개요 PID 제어기(PID Controller, Proportional-Integral-Derivative Controller)는 제어공학에서 가장 널리 사용되는 피드백 제어기 일종으로, 시스템의 출력이 목표값(Setpoint)에 빠르고 정확하게 수렴하도록 제어 입력을 조정하는 장치입니다. PID 제어기는 비례(P), 적분(I),...

신축 아파트

경제 > 부동산 > 주택 유형 | 익명 | 2025-09-14 | 조회수 5

# 신축 아파트 ## 개요 **신축 아파트**(新築 아파트)는에 완공되거나 준공 절차를 마친 아파트를 의미하며, 일반적으로 준공 후 1년 이내의파트를 지칭. 주거 시장에서 신축 아파트 기존 중고 아파트와 구되는 중요한 주택 유형으로, 주거 환경의 최신 설계, 에너지 효율성, 첨단 시스템 도입 등 다양한 장점을 가지고 있어 수요자들에게 높은 선호도를 보인...

동적 응답성

기술 > 제어공학 > 동적 제어 | 익명 | 2025-09-14 | 조회수 6

# 동적 응답성 ## 개요 **동적 응성**(Dynamic Responsiveness)은 제공학에서 시스템이 외 입력 또는 내부 상태 변화에 얼마나 신속하고 정확하게 반응하는지를 나타는 핵심 성능 지표이다. 특히 **동적 제어**(Dynamic Control) 시스템에서는 시간에 따라 변화하는 입력 신호에 대해 출력이 얼마나 잘 추종하는지가 중요하며, ...

변곡점

수학 > 미적분학 > 미분학 | 익명 | 2025-09-13 | 조회수 6

# 변곡점 ## 개요 변곡점(變曲點, inflection point)은 함수 그래프가 **오목에서 볼록으로**, 또는 **볼록에서 오목으로** 변하는 지점을 의미한다. 즉, 함수의 **곡률**(curvature)이 부호를 바꾸는 점으로, 그래프의 형태가 변하는 전환점이라 할 수 있다. 변곡점은 미분학에서 함수의 그래프를 분석하고 해석하는 데 중요한 역할...

그래디언트 부스팅 회귀

기술 > 인공지능 > 머신러닝 | 익명 | 2025-09-13 | 조회수 8

# 그래디언트 부스 회귀 ## 개요 **그래디언트 부스팅 회**(Gradient Boosting Regression)는 머신러닝에서 회귀(regression) 문제를 해결하기 위해 사용되는 강력한 앙상블 학습 기법입니다. 이은 여러 개의 약한 학습기(weak learners), 주로 결정 트리(decision tree)를 순차적으로 결합하여 강한 예측 ...

Back-EMF 추정

기술 > 제어공학 > Back-EMF 추정 | 익명 | 2025-09-13 | 조회수 7

# Back-EMF 추정 ## 개요 Back-EM(Back Electromotive Force, 역기전력) 추정은 무러시 모터(Brushless DC Motor, BLDC) 및 영구자석 동기모터(Permanent Magnet Synchronous Motor, PMSM)의 센서리스 제어에서 핵심적인 기술입니다. 모터가 회전할 때, 코일에 유도되는 전압인 ...

계산 그래프

기술 > 인공지능 > 컴퓨테이션 그래프 | 익명 | 2025-09-11 | 조회수 7

# 계산 그래프 **계산 그래프Computational Graph)는 수학적 연산이나 함수의 계산 과정을 **방향성 그래프**(Directed Graph) 형태로 표현한 자료 구조입니다. 이는 인공지능, 특히 딥러 모델의 학습 과정에서 **전파**(Backpropagation)를율적으로 수행하기 위해 핵심적인 역할을 합니다. 계산 그래프는 입력값에서 출력...

스펙트럴 방법

기술 > 수치계산 > 편미분방정식 해법 | 익명 | 2025-09-11 | 조회수 5

# 스펙트럴 방법## 개요 스펙트럴 방법(Spectral Method) 편미분방정(PDE, Partial Differential Equation)의 수치적 해를 구 데 사용되는 고급 수치 해석 기법 중 하나로, 주로 주기적 또는 매끄러운 해를 갖는 문제에 적합하다. 이 방법은 유한 차분법(Finite Difference Method)이나 유한 요소법(Fi...

# 로지스틱 방정 ## 개요 로지스틱 방정식(Logistic Equation)은 생물학에서 개체군의 성장 양상을 수학적으로 모델링하는 데 널리 사용되는 미분 방정식이다. 이 방정식은 개체군이 무한한 자원을 가정한 기하급수적 성장(지수 성장)에서 벗어나, 자원의 제한을 고려한 현실적인 성장 패턴을 설명한다. 즉, 개체군이 초기에는 빠르게 증가하지만, 환경...

# 피카르-린델뢰프 정리 ## 개요 피카르-린델뢰프리**(Picard–Lindelöf Theorem)는 상미분방정식(Ordinary Differential Equation, ODE)의 해가 존재하고 유일함을 보장하는 중요한 정리로, 초기값 문제의 해에 대한 존재성과 유일성에 관한 기본적인 결과를 제공한다. 이 정리는 19세기 말 프랑스의 수학자 **에밀...

시그모이드 함수

교육 > 수학 > 시그모이드 함수 | 익명 | 2025-09-07 | 조회수 8

# 시그모이드 함수 ## 개요 시모이드 함수(Sigmoid Function)는 S자 형태의 곡선을 가지는 수학적 함수로, 특히 인공지능, 통계학, 생물학, 그리고 수학 교육 등 다양한 분야 중요한 역할을. 이 함수는 입력값이 매우 작을 때 출력값이 0에 가까워지고, 입력값이 매우 클 때는 출력값이 1에 가까워지는 특성을 가지며, 중간 영역에서는 부드러운...

초기값 문제

수학 > 미분방정식 > 경계 및 초기값 문제 | 익명 | 2025-09-07 | 조회수 13

# 초기값 문제 ## 개요 **초기값 문제**(Initial Value, IVP)는 미분방정식 이론에서 중요한 주제 중 하나로, 주어진 미분방정식과 특정한 초기 조건을 만족하는 해를 찾는 문제를 말한다. 일반적으로 시간에 따라 변화하는 동역학적 시스템의 행동을 모델링할 때 사용되며, 물리학, 공학, 생물학, 경제학 등 다양한 분야에서 널리 활용된다. ...

경계값 문제

수학 > 미분방정식 > 경계 및 초기값 문제 | 익명 | 2025-09-07 | 조회수 12

# 경계값 문제 ## 개요 **경계값 문제**(Boundary Value Problem, BVP)는 미분방정식의 해를 구하는 과정에서, 특정 구간의 **경계**(boundary)에서 해가 만족해야 하는 조건을 제시하는 수적 문제이다. 이는 **초기값 문제**(Initial Value Problem, IVP)와 대비되는 개념으로, 초기값 문제는 독립변수의...

뉴턴 방법

기술 > 수치계산 > 최적화 알고리즘 | 익명 | 2025-09-07 | 조회수 7

# 뉴턴 방법 ##요 **뉴턴 방법**(Newton Method), 또는 **뉴턴-랍슨 방법**(Newton-Raphson Method)은 비선형 방정식의 근을 수치적으로 근사하는 데 사용되는 강력한 반복 최적화 알고리즘. 이 방법은 미분 가능한 함수에 대해 초기 추정값에서 출발하여 접선을 이용해 점차 정확한 해에 수렴하도록 설계되어 있으며, 특히 수치...

다변수 체인 규칙

수학 > 다변수 미적분학 > 체인 규칙 | 익명 | 2025-09-07 | 조회수 12

# 다변수 체인 규칙 다변수 체인 규칙(Multivariable Chain Rule)은 다변수 미적분학에서 중요한 도구 중 하나로, **여러 변수에 의존하는 함수의 합성 함수를 미분할 때 사용되는 법칙입니다. 이 규칙은 단일 변수 함수의 체인 규칙을 다변수 함수로 확장한 것으로, 물리학, 공학, 경제학 등 다양한 분야에서 함수의 변화율을 분석할 때 핵심적...

라플라스 방정식

수학 > 미적분학 > 타원형 방정식 | 익명 | 2025-09-07 | 조회수 9

# 라플라스 방정식 라플라스 방정식(Laplace's Equation)은 수학, 특히 편미분방정식과 수리물리학에서 매우 중요한할을 하는 타원형 편미분방정식의 대표적인 예입니다. 이 방정식은 정적인리적 현상, 즉 시간에 따라 변하지 않는 평형 상태를 기술하는 데 널리 사용되며, 전기학, 중력장, 유체역학, 열전도 등 다양한 분야에서 등장합니다. 라플라스 방...

헤시안 행렬

기술 > 수학 > 선형대수학 | 익명 | 2025-09-07 | 조회수 11

# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...

단진자

물리학 > 고전역학 > 진동 현상 | 익명 | 2025-09-07 | 조회수 5

# 단진자 단진자(Simple Pendulum)는 고역학에서 진동 현상을 이해 데 핵심적인 모델 중 하나이다. 이상적인 조건 작동하는 단진 질량을 가진 물체(진자추)가 무질량이고 늘이지 않는 실에 매달려 중력의 영향을 받아 진동하는 시스템을 의미한다. 이 모델은 진동 운동의 기본 원리를 설명하고, 조화 운동과 관련된 수학적 분석을 가능하게 하며, 물리학 ...