검색 결과

"최소값"에 대한 검색 결과 (총 26개)

치역

수학 > 미적분학 > 함수 | 익명 | 2025-09-15 | 조회수 0

# 치역 ## 개요 **치역**(range)은 함수 출력값, 즉에 의해 정의역의 원소들이 대응되는 값들의 집합을 의미한다. 수학, 특히 미적분학에서 치은 함수의 행동과 성질을 분석하는 데 핵심적인 개념 중 하나이다. 함수 $ f: A \to B $가 주어졌을 때, 정의역 $ A $의 각 원소 $ x $에 대해 $ f(x) $의 값이 존재하며, 이러한 모...

변곡점

수학 > 미적분학 > 미분학 | 익명 | 2025-09-13 | 조회수 4

# 변곡점 ## 개요 변곡점(變曲點, inflection point)은 함수 그래프가 **오목에서 볼록으로**, 또는 **볼록에서 오목으로** 변하는 지점을 의미한다. 즉, 함수의 **곡률**(curvature)이 부호를 바꾸는 점으로, 그래프의 형태가 변하는 전환점이라 할 수 있다. 변곡점은 미분학에서 함수의 그래프를 분석하고 해석하는 데 중요한 역할...

Credit-Based Shaping

기술 > 네트워크 > 대역폭 관리 | 익명 | 2025-09-11 | 조회수 7

# Credit-Based Shaping **Credit-Based Shaping**(크레딧 기반 대역폭어)은 실시간 네트워크 통신, 특히 **IEEE 8021Qav** 표준에서 정의된 **Time-Sensitive Networking**(TSN) 환경에서 사용되는 대역폭 관리 기법 중 하나입니다. 이 기법은 특정 트래픽 클래스(예: 오디오/비디오 스트림...

SSE4

기술 > 하드웨어 > SIMD 명령어 집합 | 익명 | 2025-09-11 | 조회수 4

# SSE4 **SSE4**(Streaming SIMD Extensions 4) 인텔(Intel)과 AMD가 개발한 x86 아키텍처 기반 프로세서에서 사용되는 SIMD(Single Instruction, Multiple Data) 명령어 집합의 확장판으로, 멀티미디어 처리, 영상 인코딩/코딩, 과학 계산, 압축 알고리즘 다양한 성능 집약적 작업의 효율성을...

정수 연산

기술 > 컴퓨터과학 > 연산 | 익명 | 2025-09-11 | 조회수 3

# 정수 연산 정수 연산(Integer Arithmetic)은과학에서 정수(양의수, 음의 정수, 0)를 대상으로 수행하는 기본적인 산술 연산을 의미합니다.는 컴퓨터의 하드웨어 및 소프트웨어 전반에서 핵심적인 역할을 하며, 프로그래밍, 알고리즘 설계, 시스템 프로그래밍, 암호학 등 다양한 분야에 응용됩니다. 정수 연산은 실수 연산과 달리 부동소수점 오차가 ...

뉴턴 방법

기술 > 수치계산 > 최적화 알고리즘 | 익명 | 2025-09-07 | 조회수 5

# 뉴턴 방법 ##요 **뉴턴 방법**(Newton Method), 또는 **뉴턴-랍슨 방법**(Newton-Raphson Method)은 비선형 방정식의 근을 수치적으로 근사하는 데 사용되는 강력한 반복 최적화 알고리즘. 이 방법은 미분 가능한 함수에 대해 초기 추정값에서 출발하여 접선을 이용해 점차 정확한 해에 수렴하도록 설계되어 있으며, 특히 수치...

라플라스 방정식

수학 > 미적분학 > 타원형 방정식 | 익명 | 2025-09-07 | 조회수 5

# 라플라스 방정식 라플라스 방정식(Laplace's Equation)은 수학, 특히 편미분방정식과 수리물리학에서 매우 중요한할을 하는 타원형 편미분방정식의 대표적인 예입니다. 이 방정식은 정적인리적 현상, 즉 시간에 따라 변하지 않는 평형 상태를 기술하는 데 널리 사용되며, 전기학, 중력장, 유체역학, 열전도 등 다양한 분야에서 등장합니다. 라플라스 방...

헤시안 행렬

기술 > 수학 > 선형대수학 | 익명 | 2025-09-07 | 조회수 7

# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...

미적분학

교육 > 수학 > 미적분학 | 익명 | 2025-09-05 | 조회수 4

# 미적분학 ## 개요 미적학(微積分學, Calculus)은 수학의 한 분야로, **변화율**(미분)과 **누적량**(적분)을 다루는 학문이다. 현대 과학과 공학, 경제학, 물리학 등 다양한 분야에서 핵심 도구로 사용되며, 함수의 기울기, 면적, 부피, 속도, 가속도 등을 분석하는 데 필수적인 역할을 한다. 미적분학은 17세기에 아이작 뉴턴(Isaac ...

SciPy

기술 > 데이터과학 > 데이터 분석 | 익명 | 2025-09-02 | 조회수 7

SciPy ## 개요 **SciPy**(Science Python) 과학적 계산 및 수치석을 위한 파썬의 핵심 라이러리 중 하나로, NumPy를 기반으로 하여 고급 수학적 알고리즘과 수치적 기법을 제공합니다. 데이터 과학, 공학, 물리학, 통계학 등 다양한 분야에서 복잡한 계산을 효율적으로 수행할 수 있도록 설계되어 있으며, 오픈소스 프로젝트로 개발자 ...

박스 플롯

기술 > 데이터시각화 > 그래프 유형 | 익명 | 2025-09-01 | 조회수 5

# 박스 플롯 ## 개요 **박스 플롯**(Box Plot), 또는 **상자 수염 그림**(Box-and-Whisker Plot) 데이터의 분포와 산포도를 시각적으로 표현하는 데 사용되는 그래프 유형. 주로 통계 분석과 데이터 시각화에서 데이터의 중심 경향, 변동성, 이상치(Outliers) 등을 한눈에 파악할 수 있도록 도와줍니다. 박스 플롯은 최소값...

SciPy

기술 > 데이터과학 > 분석 | 익명 | 2025-08-31 | 조회수 11

# SciPy ## 개요 **SciPy**(Science Python)는 과학적 및 기술적 계산을 위한 파이썬 기반의 오픈소스 소프트웨어 생태계의 핵심 구성 요소 중 하나입니다 SciPy는 수치 계산, 최적화, 선형 대수, 적분, 보간, 신호 처리, 통계 분석 등 다양한 수학적 및 과학적 문제 해결을 위한 강력한 함수와 알고리즘을 제공합니다. SciPy...

SciPy

기술 > 데이터과학 > 과학계산 | 익명 | 2025-08-31 | 조회수 10

# SciPy ## 개요 **SciPy**(Science Python)는 파이썬 기반의 오픈소스 과학 계산 라이브러리로, 수치 계산, 최적화 통계, 신 처리, 선형 대수, 적분, 미분 방정식 해법 등 다양한 과학 및 공학 문제를 해결하기 위한 고수준의 알고리즘과 수학적 도구를 제공합니다. SciPy는 NumPy를 기반으로 하며, 과학기술 컴퓨팅(Scie...

BFGS

기술 > 데이터과학 > 최적화 알고리즘 | 익명 | 2025-08-31 | 조회수 6

# BFGS **BFGS**(Broyden–Fletcher–Goldfarb–Shanno 알고리즘은 비선형 최적화 문제에서 널리 사용되는 준뉴턴(Quasi-Newton) 방법 중 하나로, 목적 함수의 최소값을 반복적으로 탐색하는 데 효과적입니다. 특히, 목적 함수의 2차 미분(헤시안 행렬)을 직접 계산하지 않고도 뉴턴 방법과 유사한 수렴 성능을 달성할 수 ...

비볼록 최적화

기술 > 데이터과학 > 분석 | 익명 | 2025-07-30 | 조회수 11

```markdown # 비볼록 최적화 ## 개요 비볼록 최적화(Non-convex Optimization)는 데이터과학과 기계학습에서 핵심적인 역할을 하는 수학적 최적화 문제입니다. 볼록 최적화 문제와 달리, 비볼록 문제는 여러 국소 최소값(Local Minima)과 안장점(Saddle Point)을 가질 수 있어 해법 도출이 복잡합니다. 특히 딥러닝,...

연속성

교육 > 수학 > 미적분학 | 익명 | 2025-07-30 | 조회수 11

# 연속성 ## 개요 **연속성**(Continuity)은 미적분학에서 함수의 중요한 성질 중 하나로, 함수 그래프가 끊김 없이 매끄럽게 연결되어 있음을 의미합니다. 이 개념은 극한과 밀접하게 연관되어 있으며, 함수의 행동을 예측 가능하게 만드는 기초가 됩니다. 연속성은 수학적 분석뿐만 아니라 물리학, 공학, 경제학 등 다양한 분야에서 모델링에 필수적인 ...

치역

교육 > 수학 > 기하학 | 익명 | 2025-07-29 | 조회수 10

# 치역 ## 개요 **치역**(range)은 수학, 특히 함수와 기하학에서 중요한 개념으로, 함수가 **정의역**(domain)의 입력값에 대해 실제로 출력하는 값들의 집합을 의미합니다. 치역은 **공역**(codomain)과 구분되어야 하며, 공역은 함수가 가질 수 있는 모든 가능한 출력값의 집합이지만 치역은 실제로 함수에 의해 "달성되는" 값들만 포...

목적 함수

기술 > 데이터과학 > 분석 | 익명 | 2025-07-29 | 조회수 13

# 목적 함수 ## 개요 목적 함수(objective function)는 데이터과학과 최적화 문제에서 핵심적인 역할을 하는 수학적 함수로, 모델의 성능을 평가하거나 최적의 해를 도출하기 위해 최소화 또는 최대화하는 대상입니다. 기계학습에서는 모델의 예측 오차를 줄이는 것을 목표로 하며, 수학적 최적화에서는 특정 조건 하에서 최적의 해를 찾는 데 사용됩니다...

백프로파게이션

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 16

# 백프로파게이션 (Backpropagation) ## 개요 백프로파게이션(Backpropagation)은 인공 신경망(Artificial Neural Network, ANN)을 학습시키는 데 사용되는 주요 알고리즘 중 하나입니다. 이 기법은 **오차 역전파**라고도 불리며, 네트워크의 출력과 실제 타겟 값 사이의 오차를 최소화하기 위해 가중치와 편향을 ...