# Pascal Pascal은 1970년대 초 스위스의 컴퓨터 과학자 **니클라우스 비르트**(Niklaus Wirth)에 의해 개발된 고급 프로그래밍 언어입니다. 구조적 프로그래밍과 데이터 구조의 명확한 표현을 강조하며 설계되었으며, 교육용 언어로 널리 사용되었습니다. 이름은 프랑스의 수학자이자 철학자인 블레즈 파스칼(Blaise Pascal)에서 유래...
검색 결과
"수학자"에 대한 검색 결과 (총 33개)
# 푸리에 급수 ## 개요 **푸리에 급수**(Fourier series)는 주기 함수를 삼각함수(사인과 코사인) 또는 복소 지수 함수의 무한 급수로 표현하는 수학적 도구이다. 이 급수는 프랑스의 수학자 **조제프 푸리에**(Joseph Fourier)가 열전도 방정식을 푸는 과정에서 처음 제안하였으며, 이후 해석학, 물리학, 공학, 신호 처리 등 다양...
# 본페로니 보정 ## 개요 **본페로니 보정**(Bonferroni correction)은 다중 비교 문제(multiple comparisons problem)에서 제1종 오류(Type I error, 귀무가설이 참인데 기각하는 오류)의 발생 확률을 제어하기 위해 널리 사용되는 통계적 방법이다. 여러 통계 검정을 동시에 수행할 경우, 전체적으로 제1종...
# 라게르 다항식 라게르 다항식(Laguerre polynomials)은 수학, 특히 직교 다항식 이론에서 중요한 위치를 차지하는 다항식 계열이다. 이 다항식들은 양자역학, 수치해석, 확률론 등 다양한 분야에서 응용되며, 특히 수소 원자 모형의 파동함수 해석에 핵심적인 역할을 한다. 본 문서에서는 라게르 다항식의 정의, 성질, 생성 방법, 직교성, 그리고...
# 에르미트 다항식 에르미트 다항식(Hermite polynomial)은 수학, 특히 직교 다항식 이론과 양자역학, 확률론 등 다양한 분야에서 중요한 역할을 하는 특수함수의 일종입니다. 이 다항식은 프랑스의 수학자 샤를 에르미트(Charles Hermite)의 이름을 따서 명명되었으며, 가우스 함수를 가중치로 갖는 직교성을 지닌 다항식 계열에 속합니다. ...
블라디미 레벤슈타인 블라디미르 레벤슈인(Vladimir Levenshtein, 935년5월 20일 – 201년 9월2일)은 소련 및 러시아의 유명한 수학자이자 정보 이론 및 오류 정정 코드 분야의 선구자 중 명이다. 그 특히 **레벤슈타인 거리**(Levenshtein Distance) 널리 알려져, 이 개념은 문자열 간의 유사도를 측정하는 데 핵심적인 ...
# 모듈러 연산 **모듈러 연산**(Mod Arithmetic)은 정수론 핵심 개념 중로, 주어진수를 특정한(모듈러)로 나눈 나머지를 다루는 산술 체계입니다. 이 연산은 수학뿐 아니라 컴퓨터 과학, 암호학, 프로그래밍 등 다양한 분야 널리 활용되며, 특히 **시계 연산**(clock arithmetic)으로 비유되곤 합니다. 예를 들어, 12시간 시계에서...
# 레벤슈타인 거리## 개요 **레벤슈타인 거리Levenshtein)는 두 문자열 간의 유사도를 측정하는 **편집 거리**(Edit Distance)의 형태로, 러시아 수학자 **블라디미르 레벤슈타인**(Vladimir Levenshtein)이 1965년에 제안한 개념이다. 이 거리는 한 문자열을 다른 문자열로 변환하기 위해 필요한 **최소 편집 연산 횟...
# 캘리퍼스 개요 **캘리퍼스**(Caliper)는체의 길이, 두께 내경, 외경, 깊이 등을 정밀하게정하는 데 사용되는 계측 도구이다. 주로 금속 가공, 기계 공학, 제조업, 실험실 연구 등 다양한 산업 분야에서 널리 활용되며, 높은 정밀도와 사용의 편리성 덕분에 가장 기본적이면서도 중요한 측정 장비 중 하나로 평가받는다. 캘리퍼스는 아나로그(기계식)...
가우스 소법 ## 개요 **가스 소거법**(Gaussianination)은 선형 연립방정을 풀기 위한 가장 대표적인 알고리즘 중 하나로, 행렬을 **기약 사다리꼴**(reduced row echelon form) 또는사다리꼴row echelon form)로 변환하여 해를 구하는 방법이다. 이 방법은 독일의 수학자 카를 프리드리히 가우스의 이름을 따 명명...
# 유클리드 기 ## 개요 **유클리 기하**(Euclidean Geometry)는대 그리스의 수자 **유클리드Euclid, 기원전 300년)가 저술한 『원론』(*Elements*)에 체계적으로 정리된 기하학 체계를 말한다. 이는 평면과 공간에서 점, 선, 면, 각, 도형 등의 성질과 관계를 다루는 고전 기하학의 핵심 분야로, 오랜 기간 동안 수학 교육...
# 라그랑주 표기 라그랑주 표법(Lagrange's notation)은분을 나타내는 수학 기 체계 중 하나로, 프랑스의 수학자 조제프루이 라그랑주(Joseph-Louis Lagrange의 이름을 따서 명명되었다. 표기법은의 도함수(derivative)를 표현하는 데 널리 사용되며, 특히 미적분학 교육 및 공학, 물리학 등 다양한 분야에서 흔히 등장한다. ...
# 매끄러움 ## 개요수학, 특히 미분정식 이론에서 **매끄러움**(smooth)은 함수의 미분 가능성 정도를 나타내는 중요한 개념이다. 매끄러운 함수는 특정한 미분 가능성 조건을 만족하는 함수로, 미분방정식의 해가 존재하고 유일한지를 판단하거나, 해의 정규성(regularity)을 분석하는 데 핵심적인 역할을 한다. 매끄러움은 해석학적 성질 중 하나로,...
# 비유클리드 기학 ## 개요 비유클드 기하학(非Euclidean幾何學,-Euclidean Geometry)은 유클리 기하학의 평행선 공리를 따르지 않는 기하학 체계를 의미한다. 고전적인 유클리드 기하학 평면 위에서 직선과 각, 도형의 성질을 다루며, 특히 **"한 직선 밖의 한 점을 지나면서 그 직선과 평행한 직선은 오직 하나만 존재한다"** 는 제5...
# 불리언 표현 불리언 표현식(Boolean Expression) 프로그래밍 조건의 참(true) 또는 거짓(false 여부를 판단하는 데 사용되는 핵심적인 개념입니다. 이는 조건문, 반복문, 논리 연산 등 다양한 프로그래밍 구조의 기초를 이루, 프로그램 흐름 제어에 핵심적인 역할 합니다. 이 문서에서는 불리언 표현식의 정의, 구성 요소, 사용 예시 및 ...
# 델라나이 삼각분할 ## 개요 델라이 삼각분할(Delaunay Triangulation)은산 기하학 중요한 개념 중 하나로 주어진 평면상의 점 집합을 삼각형으로 분할하는 방법입니다. 이 분할 방식은 삼각형의 내부에 다른 점이 포함되지 않도록 하는 **델라나이 조건**(Delaunay Condition)을 만족시킵니다. 즉, 각 삼각형의 외접원(circ...
# Haskell Haskell은 함수형 프로그래밍어의 대표적인 예로, 수학적 함수의 개념을 바탕으로 프로그래을 수행하는 고급 언어. 190년에 설계 이래로 순수 함수형 프로그래밍, 게으른 평가(lazy evaluation), 정적 타입 시스템, 타입 추론 등 현대 프로그래밍 언어 연구에 큰 영향을 미친 언어로 평가받고 있습니다. 이 문서는 Haskell...
# 로지스틱 방정 ## 개요 로지스틱 방정식(Logistic Equation)은 생물학에서 개체군의 성장 양상을 수학적으로 모델링하는 데 널리 사용되는 미분 방정식이다. 이 방정식은 개체군이 무한한 자원을 가정한 기하급수적 성장(지수 성장)에서 벗어나, 자원의 제한을 고려한 현실적인 성장 패턴을 설명한다. 즉, 개체군이 초기에는 빠르게 증가하지만, 환경...
# 피카르-린델뢰프 정리 ## 개요 피카르-린델뢰프리**(Picard–Lindelöf Theorem)는 상미분방정식(Ordinary Differential Equation, ODE)의 해가 존재하고 유일함을 보장하는 중요한 정리로, 초기값 문제의 해에 대한 존재성과 유일성에 관한 기본적인 결과를 제공한다. 이 정리는 19세기 말 프랑스의 수학자 **에밀...
# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...