# 부동소수점 연산 부동소수점 연산(Floating-point arithmetic)은 컴퓨터에서 실수를 표현하고 계산하기 위해 사용하는 수치 계산 방식이다. 이 방은 매우 크거나 매우 작은 수를 효율적으로 다룰 수 있도록 설계되어 있으며, 과학 계산, 공학 시뮬레이션, 그래픽 처리, 인공지능 등 다양한 분야에서 핵심적인 역할을 한다. 본 문서에서는 부동소...
검색 결과
"LU 분해"에 대한 검색 결과 (총 17개)
# 선형 연립방정 선형 연립방정식( System of Equations)은 여러 개의 선형 방정식이 동시에 성립해야 하는 조건을 나타내는학적 구조로, 선형대수학의 핵심 주제 중 하나입니다. 이는 과학, 공학, 경제학, 컴퓨터 과학 등 다양한 분에서 현실 세계의 문제를 모델링하고 해를 구하는 데 널리 사용됩니다. 본 문서에서는 선형 연립방정식의 정의 표현 ...
# QR 분해 ## 개요 QR 분해(QR Decom)는 선형 대수에서 행렬 직교행렬(Orth Matrix)과 상각행렬(Upperangular Matrix)의 곱으로 분해하는 기법이다. 주어진 $ m \ n $ 실수 또는소수 행렬 $ A $에 대해 다음과 표현할 수 있다$$ A = QR $$ 여기서: - $ Q $는 m \times m $ 크기의 **직...
# 블록화 ## 개요 **블록화**()는 수치계산 및적화 기법 분야에서 대모 문제를 보다 관리 가능한 작은 단위인 "블록"(Block)으로 나누어 처리하는 전략을 의미합니다. 이 기법은 계산의 효율성과 메모리 접근 패턴을 개선하며,렬 처리 및 알고리즘의 수렴 속도를 향상시키는 데 널리됩니다. 특히 대용량 데이터나 고차원 변수를 다루는 최적화 문제에서 블...
# 수치 연산 개요 **수치 연산**(ical Computation) 수학적 문제를 근사적으로 해결하기 위해 실수나 부동소수점 수를 사용하여 계산을 수행하는 과정을 의미합니다. 이는 해석학적 방법으로 정확한 해를 구하기 어려운 복잡한 수학 문제, 특히 미분 방정식, 선형 대수, 적분, 최적화 등에 대해 컴퓨터를 이용해 근사해를 구하는 데 핵심적인 역할...
# 과학기술 계산 과학기술 계산(Scientific)은 과학 및 공학 분야의 복잡한 문제를 수치적 방법과 컴퓨터 시뮬레이션을 통해 해결하는 학제 간 기술 영역입니다. 이 분야는 수학, 물리학, 컴퓨터 과학, 공학 등 다양한 분야의 지식을 융합하여 실험적 또는 이론적 접근만으로는 해결하기 어려운 문제를 분석하고 예측하는 데 핵심적인 역할을 합니다. 현대 과...
# 여인자 전개 여인자 전개(Cofactor), 또는 라플라스 전개(Laplace Expansion)는 선형대수학 정사각행렬의 **행렬식**(determinant)을 계산하는 대표적인 방법 중 하나입니다. 이 방법은 행렬의 특정 행 또는 열의 원소들과 그에 대응하는 **여인자**(cofactor)를 곱하여 더함으로써 행렬식을 구하는 방식입니다. 특히 크기...
행렬식 행렬식**(式, Determinant)은 선형대수학에서 정방행렬(square matrix)에 대응되는 하나의 스칼라 값으로, 행렬의 여러 중요한 성질을 판별하는 데 핵심적인 역할을 한다. 행렬식은 행렬이 가역(invertible)인지 여부, 선형 방정식의 해의 존재성, 벡터 공간에서의 기하학적 해석(예: 부피 변화율) 등과 밀접한 관련이 있다. 이...
# 선형 연립방식 선형 연립정식(Linear System of Equations은 여러 개의 선형 방정식이 동시에 성립해야 하는 조건을 만하는 해를 찾는 수학적 문제입니다. 수치해 분야에서 선형 연립방정식은 과학, 공학, 경제학 등 다양한 분야의 모델링 문제에서 핵심적인 역할을 하며, 실제 문제 해결을 위한 수치적 알고리즘 개발의 기초가 됩니다. 이 문서...
# Numerical Recipes ## 개 *Numerical*는 과학 및 공학 분야에서 수치해석 알고리즘을 실제 문제에 적용하기 위한 전문 서적 시리즈이자 소프트웨어 라이브러리의 총체를 의미한다. 1986년 최초로 출간된 이래로 물리학, 천문학, 공학, 생물정보학 등 다양한 분야의 연구자와 엔지니어들에게 널리 사용되어 왔으며, 특히 수치적 계산의 이...
SciPy ## 개요 **SciPy**(Science Python) 과학적 계산 및 수치석을 위한 파썬의 핵심 라이러리 중 하나로, NumPy를 기반으로 하여 고급 수학적 알고리즘과 수치적 기법을 제공합니다. 데이터 과학, 공학, 물리학, 통계학 등 다양한 분야에서 복잡한 계산을 효율적으로 수행할 수 있도록 설계되어 있으며, 오픈소스 프로젝트로 개발자 ...
# SVD (특이값 분해) **SVD**(Singular Value Decomposition, 특이값 분해)는 선형대수학에서 행렬을 특정한 형태로 분해하는 기법으로, 수치해석, 데이터 과학, 기계학습, 신호 처리 등 다양한 분야에서 핵심적인 역할을 하는 수학적 도구입니다. SVD는 임의의 실수 또는 복소수 행렬을 세 개의 특수한 행렬의 곱으로 분해함으로써...
# LAPACK ## 개요 **LAPACK**(Linear Algebra PACKage)은 과학 계산 및 공학 분야에서 널리 사용되는 고성능 수치 선형대수 라이브러리입니다. 주로 행렬 연산, 선형 연립방정의 해법, 고유값 문제, 특이값 분해(SVD), 최소자승법 문제 등을 효율적으로 해결 위해 설계되었습니다. LAPACK은 FORTRAN 77로 작성으며...
# SciPy ## 개요 **SciPy**(Science Python)는 과학적 및 기술적 계산을 위한 파이썬 기반의 오픈소스 소프트웨어 생태계의 핵심 구성 요소 중 하나입니다 SciPy는 수치 계산, 최적화, 선형 대수, 적분, 보간, 신호 처리, 통계 분석 등 다양한 수학적 및 과학적 문제 해결을 위한 강력한 함수와 알고리즘을 제공합니다. SciPy...
# SciPy ## 개요 **SciPy**(Science Python)는 파이썬 기반의 오픈소스 과학 계산 라이브러리로, 수치 계산, 최적화 통계, 신 처리, 선형 대수, 적분, 미분 방정식 해법 등 다양한 과학 및 공학 문제를 해결하기 위한 고수준의 알고리즘과 수학적 도구를 제공합니다. SciPy는 NumPy를 기반으로 하며, 과학기술 컴퓨팅(Scie...
과학 계산 ## 개요 **과학 계산**(Scientific Computing)은 수학, 물리, 공학,물학 등 다양한 과 분야의 문제를 해결하기 위해 컴퓨터를 활용하는 학문 분야. 이는 복한 수학적 모을 수치적으로 해석하고, 실제 현상을 시뮬레이션하거나 예측하는 데 중심적인 역할을 한다. 과학 계산은 이론적 분석과 실험적 관찰에 더해 **제3의 과학 방법...
# 선형 연산 ## 개요 선형 연산(Linear Operation)은 데이터 과학과 분석 분야에서 핵심적인 수학적 도구로, 선형 대수학(Linear Algebra)의 기본 원리를 기반으로 합니다. 이 연산은 행렬, 벡터, 스칼라 등을 활용해 데이터의 구조를 변환하거나 패턴을 추출하는 데 사용되며, 머신러닝, 통계 분석, 최적화 문제 등 다양한 분야에 적용...