검색 결과

"Epsilon"에 대한 검색 결과 (총 15개)

선형 연산

기술 > 데이터과학 > 분석 | 익명 | 2025-07-30 | 조회수 3

# 선형 연산 ## 개요 선형 연산(Linear Operation)은 데이터 과학과 분석 분야에서 핵심적인 수학적 도구로, 선형 대수학(Linear Algebra)의 기본 원리를 기반으로 합니다. 이 연산은 행렬, 벡터, 스칼라 등을 활용해 데이터의 구조를 변환하거나 패턴을 추출하는 데 사용되며, 머신러닝, 통계 분석, 최적화 문제 등 다양한 분야에 적용...

정규 방정식

과학 > 통계학 > 회귀분석 | 익명 | 2025-07-29 | 조회수 13

# 정규 방정식 ## 개요 정규 방정식(Normal Equation)은 **선형 회귀 분석**(Linear Regression)에서 최적의 파라미터(계수)를 직접 계산하는 수학적 방법입니다. 이 방법은 반복적 최적화 알고리즘인 경사 하강법(Gradient Descent)과 달리, 행렬 연산을 통해 해를 한 번에 도출합니다. 주로 **작은 데이터셋** 또는...

최소 제곱법

과학 > 통계학 > 회귀분석 | 익명 | 2025-07-29 | 조회수 8

# 최소 제곱법 ## 개요 최소 제곱법(Least Squares Method)은 통계학에서 관측된 데이터에 가장 적합한 모델을 찾기 위해 널리 사용되는 수학적 최적화 기법이다. 이 방법은 관측값과 모델 예측값의 차이(잔차)의 제곱합을 최소화하여 최적의 파라미터를 추정한다. 특히 회귀분석에서 선형 및 비선형 모델의 파라미터 추정에 핵심적인 역할을 하며, 단...

방정식

교육 > 수학 > 통계 | 익명 | 2025-07-29 | 조회수 5

# 방정식 ## 개요 방정식은 수학에서 두 표현식이 같음을 나타내는 수식으로, 통계학에서는 데이터의 패턴을 모델링하고 예측하는 데 핵심적인 역할을 합니다. 통계적 방정식은 변수 간의 관계를 정량화하고, 불확실성을 고려한 추론을 가능하게 하며, 다양한 분석 기법의 기반을 형성합니다. 예를 들어, 회귀 분석을 통해 변수 간의 선형 관계를 모델링하거나, 가설 ...

선형 최소 제곱법

과학 > 통계학 > 회귀분석 | 익명 | 2025-07-27 | 조회수 15

# 선형 최소 제곱법 ## 개요 선형 최소 제곱법(Linear Least Squares)은 통계학과 수학에서 회귀분석의 핵심 기법 중 하나로, 관측된 데이터에 가장 잘 맞는 선형 모델을 추정하기 위해 사용됩니다. 이 방법은 **잔차의 제곱합을 최소화**하여 최적의 회귀 계수를 도출하며, 단순 회귀와 다중 회귀 분석 모두에 적용 가능합니다. 특히, 데이터의...

극한

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 17

# 극한 ## 개요 극한(limit)은 수학에서 함수의 행동을 분석하는 데 핵심적인 개념으로, 특정 점에 가까운 입력값에 대한 출력값의 추세를 나타냅니다. 미적분학의 기초가 되며, 도함수와 적분의 정의에 필수적이며, 물리학, 공학 등 다양한 분야에서 응용됩니다. 극한은 수렴과 발산을 이해하는 데 중요한 역할을 하며, 함수의 연속성, 미분 가능성 등...

DBSCAN

기술 > 데이터과학 > 분석 | 익명 | 2025-07-12 | 조회수 11

# DBSCAN ## 개요/소개 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)은 데이터 포인트의 밀도를 기반으로 군집을 형성하는 비모수적 클러스터링 알고리즘입니다. 1996년 Martin Ester 등이 제안한 알고리즘으로, K-means와 같은 전통적인 클러스터링 방법과 달리 *...

경사 하강법

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-11 | 조회수 15

# 경사 하강법 ## 개요 경사 하강법(Gradient Descent)은 머신러닝에서 모델의 파라미터를 최적화하기 위한 기본적인 최적화 알고리즘입니다. 이 방법은 **비용 함수(cost function)**의 기울기(gradient)를 계산하여, 매개변수를 반복적으로 조정해 최소값을 찾는 과정입니다. 경사 하강법은 신경망, 회귀 모델 등 다양한 학습 알고...

클러스터링

기술 > 데이터과학 > 분석 | 익명 | 2025-07-11 | 조회수 73

# 클러스터링 ## 개요 클러스터링(Clustering)은 데이터 포인트를 유사성에 따라 그룹화하는 **비지도 학습(unsupervised learning)** 기법으로, 데이터의 내재적 구조를 탐색하고 패턴을 발견하는 데 활용됩니다. 이는 분석가들이 대규모 데이터 세트에서 의미 있는 정보를 추출할 수 있도록 도와주며, 마케팅, 생물정보학, 이미지...

회귀 계수

과학 > 수학 > 통계 | 익명 | 2025-07-10 | 조회수 33

# 회귀 계수 ## 개요 회귀 계수는 통계학에서 변수 간 관계를 모델링하고 예측하는 데 사용되는 핵심 개념입니다. 주로 선형 회귀 분석을 통해 독립변수와 종속변수 사이의 수량적 관계를 정량화합니다. 이 문서에서는 회귀 계수의 정의, 종류, 계산 방법, 해석 방식 및 실제 적용 사례에 대해 상세히 설명합니다. --- ## 정의 및 개념 ### 선형 회...

회귀 방정식

과학 > 통계학 > 회귀분석 | 익명 | 2025-07-10 | 조회수 20

# 회귀 방정식 ## 개요 회귀 방정식은 통계학에서 두 변수 간의 관계를 모델링하고 예측하는 데 사용되는 수학적 표현이다. 주로 독립변수(예: X)와 종속변수(예: Y) 사이의 상관관계를 분석하며, 이는 데이터의 패턴을 이해하고 미래 값을 추정하는 데 중요한 도구로 활용된다. 회귀분석은 다양한 분야에서 적용되며, 선형회귀, 로지스틱회귀, 다항회귀 ...

단순 회귀

기술 > 데이터과학 > 분석 | 익명 | 2025-07-10 | 조회수 17

# 단순 회귀 ## 개요 단순 회귀(Simple Regression)는 하나의 독립 변수(X)와 종속 변수(Y) 간의 선형 관계를 모델링하는 통계적 방법이다. 이 기법은 데이터 간의 상관관계를 분석하고, 미래 값을 예측하거나 변수 간의 영향을 설명하는 데 널리 사용된다. 단순 회귀는 다중 회귀(Multiple Regression)와 달리 단일 독립 변수만...

선형 회귀

기술 > 데이터과학 > 분석 | 익명 | 2025-07-10 | 조회수 23

# 선형 회귀 ## 개요 선형 회귀(Linear Regression)는 통계학과 데이터 과학에서 널리 사용되는 기초적인 예측 모델링 기법이다. 이 방법은 독립 변수(X)와 종속 변수(Y) 간의 선형 관계를 수학적 방정식으로 표현하여, 미래 값을 예측하거나 변수 간의 영향을 분석하는 데 활용된다. 선형 회귀는 단순 회귀(Simple Linear Regres...

Q-러닝

기술 > 인공지능 > 강화학습 | 익명 | 2025-07-11 | 조회수 17

# Q-러닝 ## 개요 Q-러닝(Q-learning)은 강화학습(Reinforcement Learning, RL)의 대표적인 알고리즘 중 하나로, **모델을 사용하지 않는 비지도 학습** 방식이다. 이 기법은 에이전트(Agent)가 환경(Environment)과 상호작용하며 최적의 행동 정책을 학습하는 데 초점을 맞춘다. Q-러닝의 핵심 개념인 **Q-값...