# 최소제곱법 ## 개요 **최소제곱법**(Least Squares Method)은 관측된 데이터와 모델의 예측값 사이의 차이, 즉 **잔차**(residual)의 제곱합을 최소화하여 모델의 파라미터를 추정하는 통계적 방법이다. 이 방법은 회귀 분석, 데이터 피팅, 예측 모델링 등 데이터과학의 핵심 분야에서 널리 사용되며, 특히 선형 회귀 모델의 추정에...
검색 결과
"이분산성"에 대한 검색 결과 (총 7개)
# 잔차 ## 개요 **잔차**(잔여, Residual)는 통계학 및 데이터과학, 특히 **시계열 분석**에서 매우 중요한 개념 중 하나이다. 잔차는 관측된 실제 값과 모델이 예측한 값 사이의 차이를 의미하며, 모델의 적합도와 성능을 평가하는 데 핵심적인 역할을 한다. 시계열 데이터는 시간에 따라 순차적으로 수집된 데이터이므로, 잔차를 분석함으로써 모델...
# 등분산성 등분산성(等分散性, Homoscedasticity)은 통계학, 특히 회귀분석에서 매우 중요한 가정 중 하나로, 회귀 모형의 잔차(residuals)가 모든 독립변수 값에 대해 동일한 분산을 가진다는 성질을 의미합니다. 이 가정이 만족되지 않을 경우, 회귀 계수의 추정치는 여전히 불편(unbiased)할 수 있지만, 표준오차의 추정이 부정확해져...
# 등분산성 ## 개요 **등분산**(homoscedasticity)은 통계학에서 회귀 분석 분산 분석(ANOVA), t-검정 등 여러 통계적 추론 방법의 핵심적인 **통계적 가정** 중 하나입니다. 이 가정은 모델의 오차 또는 잔차(residuals)의 분산이 독립 변수의 모든 수준이나 관측값에 관계없이 **일정하다**는 것을 의미합니다. 반대로, 분...
# 오차항 오차항(Error Term)은 통계학과귀 분석에서 매우 중요한 개념, 모델이 설명하지 못하는 데이터의 변동성을 나타냅. 이는 관된 종속 변수의 값과 회귀 모델이 예측한 값 사이의 차이를 의미하며, 모델의 정확도를 평가하고 개선하는 데 핵심적인 역할을 합니다. 오차항은 일반적으로 잔차(Residual)와 혼동되기도 하지만, 통계 이론에서는 모집단...
# 최소 제곱법 ## 개요 최소 제곱법**(Least Squares Method)은 통계학과 데이터 분석에서 널리 사용되는 수학적 기법으로,측된 데이터와델의 예측값 사이의 오차를 최소화 방식으로 모델의 매개변수를 추정하는 방법이다. 특히 **회귀분석**(Regression Analysis)에서 독립변수와 종속변수 간의 관계를 설명하기 위한 직선(또는 곡...
Okay, I to write a professional wiki-style document in Korean about the Ordinary Least Squares (OLS) method under the category of Regression in Statistics. Let me start by outlining the structure base...