검색 결과

"영벡터"에 대한 검색 결과 (총 5개)

고유값

수학 > 선형대수학 > 고유값 문제 | 익명 | 2026-01-26 | 조회수 6

# 고유값 ## 개요 **고유값**(eigenvalue)은 선형대수학에서 행렬과 선형변환의 핵심적인 성질을 설명하는 중요한 개념이다. 주어진 정방행렬 \( A \)에 대해, 특정한 벡터 \( \mathbf{v} \)가 행렬 \( A \)를 곱했을 때 그 방향이 변하지 않고 크기만 스칼라배로 변하는 경우, 이 스칼라 값을 **고유값**(eigenvalue...

행렬-벡터 곱셈

수학 > 선형대수 > 행렬 연산 | 익명 | 2026-01-24 | 조회수 1

# 행렬-벡터 곱셈 행렬-벡터 곱셈은 선형대수의 핵심 연산 중 하나로, 행렬과 벡터를 결합하여 새로운 벡터를 생성하는 수학적 연산입니다. 이 연산은 선형 변환, 컴퓨터 그래픽스, 기계 학습, 물리 시뮬레이션 등 다양한 분야에서 광범위하게 활용됩니다. 본 문서에서는 행렬-벡터 곱셈의 정의, 계산 방법, 성질, 기하학적 의미 및 실제 응용 사례를 중심으로 설...

벡터

과학 > 수학 > 선형대수 | 익명 | 2025-12-30 | 조회수 20

# 벡터 ## 개요 벡터(Vector)는 수학, 물리학, 공학, 컴퓨터 과학 등 다양한 분야에서 핵심적인 개념으로 사용되는 수학적 객체이다. 직관적으로 벡터는 **크기**(magnitude)와 **방향**(direction)을 동시에 가지는 양으로 이해할 수 있다. 예를 들어, 속도, 힘, 전기장 등은 모두 방향과 크기를 가지므로 벡터로 표현된다. 반면...

특성방정식

수학 > 선형대수학 > 고유값 문제 | 익명 | 2025-10-11 | 조회수 24

# 특성방정식 ## 개요 **특성정식**(Characteristic Equation)은 선대수학에서 정방행렬(사각행렬)의 고값(Eigenvalue을 구하기 위해 사용 핵심적인 개념이다. 주어진 정방행렬 $ A $에 대해, 고유값은렬의 선형 변에서 방향이 변 않는 벡터(유벡터)에응하는 스칼 값으로 정의며, 이를 구하는 과정에서 특성방정식이 등한다. 특성정...

평행이동

수학 > 기하학 > 합동 변환 | 익명 | 2025-09-28 | 조회수 27

# 평행이동 평행이동(平行移動, Translation)은 기하학에서 도형이나 점, 선분, 또는 전체 평면상의 객체를 **특정 방향으로 일정한 거리만큼 이동시키는 변환**을 말한다. 이 과정에서 도형의 크기, 모양, 방향은 그대로 유지되며, 오직 위치만 변화한다. 평행이동은 합동 변환(congruence transformation)의 한 종류로, 도형 간의...