# 선형 연산 ## 개요 선형 연산(Linear Operation)은 데이터 과학과 분석 분야에서 핵심적인 수학적 도구로, 선형 대수학(Linear Algebra)의 기본 원리를 기반으로 합니다. 이 연산은 행렬, 벡터, 스칼라 등을 활용해 데이터의 구조를 변환하거나 패턴을 추출하는 데 사용되며, 머신러닝, 통계 분석, 최적화 문제 등 다양한 분야에 적용...
검색 결과
"수학적 표현"에 대한 검색 결과 (총 27개)
# 셀프-어텐션 ## 개요 셀프-어텐션(Self-Attention)은 인공지능 분야에서 시퀀스 데이터의 상호작용을 모델링하는 데 사용되는 핵심적인 기술입니다. 특히 **트랜스포머(Transformer)** 아키텍처의 핵심 구성 요소로, 자연어 처리(NLP) 및 컴퓨터 비전(CV) 등 다양한 분야에서 혁신을 이끌었습니다. 이 메커니즘은 입력 시퀀스 내 모든...
Okay, I to create a professional Korean document about "정적분" (Definite Integral) under the category of Calculus in Mathematics. Let me start by understanding the structure and requirements given. Fir...
```markdown # 비볼록 최적화 ## 개요 비볼록 최적화(Non-convex Optimization)는 데이터과학과 기계학습에서 핵심적인 역할을 하는 수학적 최적화 문제입니다. 볼록 최적화 문제와 달리, 비볼록 문제는 여러 국소 최소값(Local Minima)과 안장점(Saddle Point)을 가질 수 있어 해법 도출이 복잡합니다. 특히 딥러닝,...
# 체인 규칙 ## 개요 체인 규칙(Chain Rule)은 미적분학에서 합성 함수의 도함수를 구하는 핵심적인 방법론입니다. 이 규칙은 외부 함수와 내부 함수의 변화율을 곱하여 전체 함수의 변화율을 계산하는 방식으로, 과학 및 공학 분야에서 복잡한 함수의 미분을 단순화하는 데 널리 사용됩니다. 예를 들어, $ f(g(x)) $ 형태의 함수에서 $ x $에 ...
# 수직점근선 ## 개요 수직점근선(Vertical Asymptote)은 함수의 그래프가 특정 수직선 $ x = a $ 근처에서 무한대로 발산하는 현상입니다. 이는 함수가 정의되지 않은 점에서 발생하며, 미적분학에서 함수의 극한과 연속성, 불연속점 분석에 중요한 개념입니다. 수직점근선은 유리함수, 삼각함수 등 다양한 수학적 모델에서 관찰되며, 물리학과 공...
```markdown # GAN (Generative Adversarial Network) ## 개요 GAN(Generative Adversarial Network)은 2014년 Ian Goodfellow 등에 의해 제안된 딥러닝 모델로, 생성자(Generator)와 판별자(Discriminator)의 경쟁적 학습을 통해 데이터를 생성합니다. 주로 이미지...
# 잔차 제곱합 ## 개요 잔차 제곱합(Sum of Squared Residuals, SSR)은 **회귀 분석**에서 모델의 예측값과 실제 관측값 간의 차이를 정량적으로 평가하는 지표입니다. 이 값은 잔차(residual)를 제곱한 후 모든 관측치에 대해 합산한 것으로, 모델의 적합도를 판단하는 핵심 요소입니다. 잔차 제곱합이 작을수록 모델이 데이터에 잘...
# 완전 연결 층 ## 개요 완전 연결 층(Fully Connected Layer)은 인공지능(AI) 분야에서 신경망(Neural Network)의 핵심 구성 요소 중 하나로, 입력 데이터와 출력 데이터 간의 복잡한 관계를 모델링하는 데 사용됩니다. 이 층은 전층 연결 구조를 가지며, 모든 노드가 이전 계층의 모든 노드와 연결되어 있습니다. 일반적으로 신...
# 평균 풀링 (Average Pooling) ## 개요/소개 평균 풀링(Average Pooling)은 딥러닝에서 네트워크의 공간적 차원을 축소하고, 계산 복잡도를 줄이기 위해 사용되는 기법이다. 특히 컨볼루션 신경망(Convolutional Neural Network, CNN)에서 입력 데이터(예: 이미지)의 특징을 추출한 후, 지역적인 정보를 평균화...
# 맥스 풀링 (Max Pooling) ## 개요/소개 맥스 풀링(Max Pooling)은 딥러닝에서 널리 사용되는 **공간적 차원 축소 기법**으로, 특히 **컨볼루션 신경망(Convolutional Neural Network, CNN)**에서 중요한 역할을 합니다. 이 기법은 입력 데이터의 공간 크기를 줄이면서 주요 특징(예: 엣지, 패턴)을 유지하는...
# 나눗셈 규칙 ## 개요 나눗셈 규칙(Quotient Rule)은 미적분학에서 두 함수의 비(商)를 미분할 때 사용하는 기본적인 도함수 계산법이다. 이는 분자와 분모가 각각 다른 함수로 구성된 경우, 단순히 분자와 분모를 따로 미분한 후 나누는 것이 아니라, 특정 공식을 통해 정확하게 도함수를 구할 수 있도록 한다. 본 문서에서는 나눗셈 규칙의 ...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...
# 피타고라스 정리 ## 개요 피타고라스 정리는 직각삼각형의 세 변 사이의 관계를 설명하는 기하학적 정리로, 수학 역사상 가장 유명한 공식 중 하나이다. 이는 "직각삼각형에서 빗변의 제곱은 다른 두 변의 제곱의 합과 같다"는 내용을 담고 있으며, 삼각법, 물리학, 공학 등 다양한 분야에 응용된다. 정리는 고대 그리스 수학자 피타고라스(Πυθαγόρας)에...
# 대수학 ## 개요 대수학(algebra)은 수학의 한 분야로, 수와 기호를 사용하여 수량 간의 관계를 추상화하고 일반화하는 학문이다. 이는 단순한 계산을 넘어 변수, 방정식, 함수 등 복잡한 구조를 탐구하며, 과학, 공학, 컴퓨터 과학 등 다양한 분야에서 필수적인 도구로 활용된다. 대수학은 고대부터 현대까지 수많은 수학자들의 연구를 통해 발전해왔으며,...
# 활성화 함수 ## 개요/소개 활성화 함수는 인공신경망(ANN)에서 입력 신호를 처리하여 출력을 생성하는 데 사용되는 핵심 요소입니다. 이 함수는 신경망이 비선형 관계를 학습할 수 있도록 하며, 단순한 선형 모델로는 해결 불가능한 복잡한 문제(예: 이미지 인식, 자연어 처리)를 해결하는 데 기여합니다. 활성화 함수의 선택은 네트워크 성능, 수렴 속도...
# 시그모이드 함수 ## 개요 시그모이드 함수(Sigmoid Function)는 **0에서 1 사이의 값을 출력**하는 비선형 활성화 함수로, 인공지능(AI) 및 머신러닝(ML) 분야에서 널리 사용됩니다. 이 함수는 로지스틱 회귀(Logistic Regression), 신경망(Neural Network) 등에서 **확률을 예측**하거나 **이진 분류(Bi...
# L1 정규화 ## 개요/소개 L1 정규화(L1 Regularization)는 머신러닝 모델의 과적합(overfitting)을 방지하기 위해 사용되는 중요한 기법 중 하나입니다. 이 방법은 모델의 파라미터(계수)에 절대값을 기반으로 페널티를 추가하여, 불필요한 특성(feature)을 제거하고 모델의 단순성을 유지합니다. L1 정규화는 특히 **스파시...
# 컨볼루션 신경망 ## 개요 컨볼루션 신경망(Convolutional Neural Network, CNN)은 이미지 처리 및 컴퓨터 비전 분야에서 널리 사용되는 인공신경망의 한 종류입니다. 주로 2차원 또는 3차원 데이터(예: 이미지, 영상)를 자동으로 특징을 추출하고 분류하는 데 효과적입니다. CNN은 계층 구조를 통해 입력 데이터에서 계층적인...
# 입력 게이트 ## 개요 입력 게이트는 인공지능 분야에서 특히 **장기 기억 유닛**(LSTM)과 같은 **순환 신경망**(RNN) 구조에서 핵심적인 역할을 하는 구성 요소이다. 이 게이트는 시퀀스 데이터 처리 중 새로운 정보가 어떻게 저장되는지를 제어하며, 장기 의존성을 관리하는 데 기여한다. 입력 게이트의 작동 원리는 신경망의 **세포 상태**(ce...