# 유클리드 기 ## 개요 **유클리 기하**(Euclidean Geometry)는대 그리스의 수자 **유클리드Euclid, 기원전 300년)가 저술한 『원론』(*Elements*)에 체계적으로 정리된 기하학 체계를 말한다. 이는 평면과 공간에서 점, 선, 면, 각, 도형 등의 성질과 관계를 다루는 고전 기하학의 핵심 분야로, 오랜 기간 동안 수학 교육...
검색 결과
"삼각형"에 대한 검색 결과 (총 14개)
삼각근 개요 삼각근(三角筋, *Deltoid muscle*) 인간의 어깨를 형성하는 주요 근육으로,깨의 윤곽을 결정하고 상지의 다양한 운동을 가능하게 하는 중요한 역할을 수행한다. 이름은 그리스어 '델타(delta)'에서 유래하였으며, 그 형태가 삼각형을 닮았기 때문에 붙여졌다. 삼각근은 팔의 들어올림(전굴, 외전, 후굴)과 회전 운동에 관여하며, 상...
# 비유클리드 기학 ## 개요 비유클드 기하학(非Euclidean幾何學,-Euclidean Geometry)은 유클리 기하학의 평행선 공리를 따르지 않는 기하학 체계를 의미한다. 고전적인 유클리드 기하학 평면 위에서 직선과 각, 도형의 성질을 다루며, 특히 **"한 직선 밖의 한 점을 지나면서 그 직선과 평행한 직선은 오직 하나만 존재한다"** 는 제5...
# 델라나이 삼각분할 ## 개요 델라이 삼각분할(Delaunay Triangulation)은산 기하학 중요한 개념 중 하나로 주어진 평면상의 점 집합을 삼각형으로 분할하는 방법입니다. 이 분할 방식은 삼각형의 내부에 다른 점이 포함되지 않도록 하는 **델라나이 조건**(Delaunay Condition)을 만족시킵니다. 즉, 각 삼각형의 외접원(circ...
# 삼각 부등식 ## 개요 **삼각 부등식**(Triangleequality)은 선대수학에서 벡 공간의 노름orm)이 만해야 하는 핵심 성질 중 하나로, 두 벡터의 합의 크기가 각 벡터의 크기의 합보다 작거나 같다는 원리를 수학적으로 표현한 것이다. 이 부등식은 기하학적 직관에서 유래되었으며, 삼각형에서 임의의 두 변의 길이의 합이 세 번째 변의 길이보...
# 콜백 ## 개 **콜백**(Callback)은 프로그래밍에서 비동기를 구현하는 널리 사용되는 패 중 하나로, 특정 작업이료된 후 실행될 함수를 인자로 전달하여 나에 호출되도록 하는 기법입니다. 주 이벤트 기반 프로그래밍, 비동기 I/O, GUI 프로그래밍, 웹 개발 등에서 활용되며, 특히 JavaScript와 같은 단일 스레드 언어 비동기 작업 처리...
# 복소근 **복소근**(complex root)은 복소수 범위에서 특정 방식의 해가 되는 복소수를 의미한다. 특히 다항방정식, 지수방정식, 삼각함수 방정식 등에서 실수 범위를 넘어서 해를 구할 때 등장하며, 복소해석학에서 중요한 개념 중 하나이다. 복소근은 실수부와 허수부로 구성된 복소수 형태로 표현되며, **대수학의 기본정리**(Fundamental ...
권한 검사## 개요 **권한 검사**(Authorization Check)는 정보 시스템에서 특정 사용자나 프로세스가 특정 리소스에 접근하거나 특정 작업을 수행할 수 있는지를 판단하는 핵심 보안 절차입니다. 인증(Authentication이 "당신이 누구인지"를 확인하는 단계라면, 권한 검사는 "당신이 이 작업을 수행할 수 있는 권한이 있는가"를 결정하는...
# 제곱근 ## 개요 제곱근은 수학에서 중요한 개념으로, 어떤 수를 제곱하여 원래의 수를 얻을 수 있는 수를 의미합니다. 예를 들어, 2는 4의 제곱근이 되며, 3은 9의 제곱근입니다. 이 문서에서는 제곱근의 정의, 성질, 계산 방법, 응용 분야 등을 체계적으로 설명하며, 고등학교 수학 수준의 이해를 돕기 위해 구성되었습니다. ## 제곱근의 정의 ###...
# 피타고라스 정리 ## 개요 피타고라스 정리는 직각삼각형의 세 변 사이의 관계를 설명하는 기하학적 정리로, 수학 역사상 가장 유명한 공식 중 하나이다. 이는 "직각삼각형에서 빗변의 제곱은 다른 두 변의 제곱의 합과 같다"는 내용을 담고 있으며, 삼각법, 물리학, 공학 등 다양한 분야에 응용된다. 정리는 고대 그리스 수학자 피타고라스(Πυθαγόρας)에...
# 기하학 ## 개요 기하학(幾何學)은 수학의 한 분야로, 공간과 형태, 크기, 상호관계를 연구하는 학문이다. 고대부터 현대에 이르기까지 인간이 자연현상과 물리적 세계를 이해하기 위해 발전시킨 체계적인 지식으로, 공학, 물리학, 컴퓨터 과학 등 다양한 분야와 밀접한 연관을 가진다. 기하학은 도형의 성질을 탐구하는 동시에 수학적 추론과 논리를 활용해...
# 함수 ## 개요 함수는 수학에서 중요한 개념으로, 하나의 입력 값에 대해 단일 출력 값을 매핑하는 규칙을 의미합니다. 이는 다양한 분야에서 모델링과 예측을 가능하게 하며, 대수학, 미적분학, 과학 등에서 핵심적인 역할을 합니다. 본 문서에서는 함수의 정의, 종류, 성질, 실생활 적용 등을 상세히 설명합니다. --- ## 정의 함수는 **도메인**(...
# 무리수 ## 개요 무리수(無理數, *irrational number*)는 유리수(有理數)가 아닌 실수를 의미합니다. 유리수는 두 정수의 비로 표현할 수 있는 수이지만, 무리수는 그렇지 못한 수입니다. 이들은 수학에서 중요한 역할을 하며, 기하학, 대수학, 해석학 등 다양한 분야에 적용됩니다. ## 정의 및 특성 무리수는 **유리수가 아...
# 수학 ## 개요 수학은 양, 구조, 공간 및 변화와 같은 추상적 개념을 탐구하는 체계적인 학문이다. 고대부터 현대까지 인간의 사고와 과학 기술 발전에 깊이 관여하며, 자연과학, 공학, 경제학 등 다양한 분야에서 필수적인 도구로 활용된다. 수학은 **기초수학**과 **심화수학**으로 나뉘며, 본 문서에서는 기초수학의 핵심 개념과 역사적 배경을 중심으로 ...