검색 결과

"공분산 행렬"에 대한 검색 결과 (총 9개)

특성 추출

기술 > 데이터과학 > 데이터 전처리 | 익명 | 2025-12-07 | 조회수 2

# 특성 추출 ## 개요 **특성 추출**(Feature Extraction)은 데이터 과학과 머신러닝 분야에서 원시 데이터(raw data)로부터 유의미한 정보를 추출하여 모델 학습에 적합한 형태의 입력 변수(특성, features)를 생성하는 과정을 의미합니다. 이는 데이터 전처리의 핵심 단계 중 하나로, 고차원 데이터의 차원 축소, 노이즈 제거, ...

특잇값 분해

기술 > 수학 > 선형대수 | 익명 | 2025-10-12 | 조회수 14

# 특잇값 분해 **특잇값 분해**(Singular Value Decomposition, S)는 선형수학에서 행렬을 세 개의별한 행렬로 분해하는 기법으로, 데이터 과학, 기계 학습, 신호 처리, 이미지 압축 등 다양한 분야에서 핵심적인 역할을 하는 수학적 도구이다. 임의의 실수 또는 복소수 행렬에 대해 적용할 수 있으며, 행렬의 구조를 명확히 이해하고 차...

주성분 분석

기술 > 인공지능 > 머신러닝 | 익명 | 2025-10-11 | 조회수 13

# 주성분 분석 개요 **성분 분석**( Component Analysis, PCA은 고차원 데이터를 저차원으로 효과적으로 축소하면서도 데이터의 주요 정보를 최대한 보존하는 **선형 차원 축소 기법**이다. PCA는 머신러닝, 통계학 데이터 시각화, 패턴식 등 다양한 분야에서 널리 사용되며 특히 데이터의 복잡성을 줄이고 노이즈를 제거하며 시각화를 용이...

numpy.linalg.svd

기술 > 데이터과학 > 데이터 분석 도구 | 익명 | 2025-10-07 | 조회수 21

# numpy.linalg.svd ## 개요 `numpy.linalg.svd는 NumPy 라이브러리에서 제공하는 **특이값 분해**(Singular Value Decomposition, SVD)를 수행하는 함수입니다. SVD는 행렬을 세 개의 특별한 행렬로 분해하는형대수의 기법으로, 데이터 과학, 기계 학습, 신호 처리, 이미지축 등 다양한 분야에서 널...

포트폴리오 최적화

경제 > 금융공학 > 투자 최적화 | 익명 | 2025-10-03 | 조회수 20

# 포트폴리오 최화 ## 개요 포트리오 최적화ortfolio Optimization)는 투자자가 자산에 투함으로써 리스크 분산시키고, 주어진 리스크 수준에서 기대 수익을 극대화하거나, 목표 수익률을 달성하기 위해 리스크를 최소화하는정을 말한다 이는 현대 금공학의 핵심 개념 중 하나로 해리 마코츠(Harry Markowitz)가 1952년 제안한현대 포트...

행렬

기술 > 수학 > 선형대수 | 익명 | 2025-10-02 | 조회수 19

# 행렬 ## 개요 **행렬**(Matrix)은학, 특히 **형대수**(Linear)에서 핵심적인으로, 수치나 기호를 직사각형 형태로 배열하여 표현한 구조입니다.렬은 방정식의 계수를계적으로 표현하고, 선형 변환을 기술, 컴퓨터 그래픽스, 통계,신러닝 등 다양한 기술 분야에서 널리 활용됩니다. 행렬은 **행**(row)과 **열**(column)로 구성...

행렬-벡터 연산

기술 > 데이터과학 > 행렬-벡터연산 | 익명 | 2025-09-13 | 조회수 28

# 행렬-벡터 연산 행렬-벡터산은 선형대수의 핵심 개념 중 하나로, 데이터과학 머신러닝, 컴퓨터 그래픽스, 물리학 등 다양한 분야에서 광범위하게 활용됩니다. 특히 고차원 데이터를 처리하고 변환하는 데 있어 행렬과 벡터의 연산은 계산 효율성과 수학적 표현의 간결성을 제공합니다. 본 문서에서는 행렬-벡터 연산의 정의, 기본 연산 종류 계산 방법, 활용 사례 ...

선형 연산

기술 > 데이터과학 > 분석 | 익명 | 2025-07-30 | 조회수 31

# 선형 연산 ## 개요 선형 연산(Linear Operation)은 데이터 과학과 분석 분야에서 핵심적인 수학적 도구로, 선형 대수학(Linear Algebra)의 기본 원리를 기반으로 합니다. 이 연산은 행렬, 벡터, 스칼라 등을 활용해 데이터의 구조를 변환하거나 패턴을 추출하는 데 사용되며, 머신러닝, 통계 분석, 최적화 문제 등 다양한 분야에 적용...

PCA

기술 > 데이터과학 > 분석 | 익명 | 2025-07-12 | 조회수 45

# PCA (주성분 분석) ## 개요 PCA(Principal Component Analysis)는 데이터 과학에서 널리 사용되는 **차원 축소 기법**으로, 고차원 데이터를 저차원 공간으로 변환하면서도 최대한 많은 정보를 유지하는 방법이다. 주성분 분석은 데이터의 분산을 최대화하는 방향(주성분)을 찾아내어, 이를 통해 데이터의 구조를 간결하게 표현하고 ...