# 결정 계수 (R-squared) ## 개요 결정 계수(R-squared)는 통계학에서 회귀 모델의 설명력(예측 능력)을 측정하는 주요 지표로, 종속 변수의 변동성 중 독립 변수에 의해 설명되는 비율을 나타냅니다. 0~1 사이의 값을 가지며, 값이 클수록 모델이 데이터를 더 잘 설명한다고 해석됩니다. 결정 계수는 회귀 분석에서 모델 적합도 평가에 널리 ...
검색 결과
"계수"에 대한 검색 결과 (총 30개)
# 회귀 계수 ## 개요 회귀 계수는 통계학에서 변수 간 관계를 모델링하고 예측하는 데 사용되는 핵심 개념입니다. 주로 선형 회귀 분석을 통해 독립변수와 종속변수 사이의 수량적 관계를 정량화합니다. 이 문서에서는 회귀 계수의 정의, 종류, 계산 방법, 해석 방식 및 실제 적용 사례에 대해 상세히 설명합니다. --- ## 정의 및 개념 ### 선형 회...
Okay, I to write a professional Korean Wikipedia-style document about "매개변수 (parameters) under the of machine learning. Let me start understanding the requirements. The wants a markdown document with ...
Okay, I to write a professional Wikipedia document about Lasso Regression based on the given structure and requirements. Let's start by understanding the classification and keywords. The main category...
# 분수분해 ## 개요 분수분해(Partial Fraction Decomposition)는 복잡한 유리 함수를 더 단순한 유리 함수의 합으로 분해하는 대수적 기법입니다. 주로 적분 계산, 미분 방정식 풀이, 역라플라스 변환 등에서 활용되며, 유리 함수의 분모를 일차 또는 이차 인수로 분해한 뒤 분자를 적절히 조합하여 표현합니다. ## 분수분해의 정의와 ...
# 선형 연산 ## 개요 선형 연산(Linear Operation)은 데이터 과학과 분석 분야에서 핵심적인 수학적 도구로, 선형 대수학(Linear Algebra)의 기본 원리를 기반으로 합니다. 이 연산은 행렬, 벡터, 스칼라 등을 활용해 데이터의 구조를 변환하거나 패턴을 추출하는 데 사용되며, 머신러닝, 통계 분석, 최적화 문제 등 다양한 분야에 적용...
# 셀프-어텐션 ## 개요 셀프-어텐션(Self-Attention)은 인공지능 분야에서 시퀀스 데이터의 상호작용을 모델링하는 데 사용되는 핵심적인 기술입니다. 특히 **트랜스포머(Transformer)** 아키텍처의 핵심 구성 요소로, 자연어 처리(NLP) 및 컴퓨터 비전(CV) 등 다양한 분야에서 혁신을 이끌었습니다. 이 메커니즘은 입력 시퀀스 내 모든...
# 점근선 ## 개요 점근선(Asymptote)은 수학, 특히 미적분학에서 함수의 그래프가 무한대로 발산할 때 가까워지는 직선을 의미합니다. 이는 함수의 전반적인 행동을 이해하고 그래프를 정확하게 그리는 데 중요한 역할을 합니다. 점근선은 크게 **수직 점근선**, **수평 점근선**, **기울기 점근선**으로 구분되며, 각각의 조건과 활용 방법은 서로 ...
Okay, I to write a professional wiki-style document in Korean about the Ordinary Least Squares (OLS) method under the category of Regression in Statistics. Let me start by outlining the structure base...
# 정규 방정식 ## 개요 정규 방정식(Normal Equation)은 **선형 회귀 분석**(Linear Regression)에서 최적의 파라미터(계수)를 직접 계산하는 수학적 방법입니다. 이 방법은 반복적 최적화 알고리즘인 경사 하강법(Gradient Descent)과 달리, 행렬 연산을 통해 해를 한 번에 도출합니다. 주로 **작은 데이터셋** 또는...
# 최소 제곱법 ## 개요 최소 제곱법(Least Squares Method)은 통계학에서 관측된 데이터에 가장 적합한 모델을 찾기 위해 널리 사용되는 수학적 최적화 기법이다. 이 방법은 관측값과 모델 예측값의 차이(잔차)의 제곱합을 최소화하여 최적의 파라미터를 추정한다. 특히 회귀분석에서 선형 및 비선형 모델의 파라미터 추정에 핵심적인 역할을 하며, 단...
# 방정식 ## 개요 방정식은 수학에서 두 표현식이 같음을 나타내는 수식으로, 통계학에서는 데이터의 패턴을 모델링하고 예측하는 데 핵심적인 역할을 합니다. 통계적 방정식은 변수 간의 관계를 정량화하고, 불확실성을 고려한 추론을 가능하게 하며, 다양한 분석 기법의 기반을 형성합니다. 예를 들어, 회귀 분석을 통해 변수 간의 선형 관계를 모델링하거나, 가설 ...
# 잔차 제곱합 ## 개요 잔차 제곱합(Sum of Squared Residuals, SSR)은 **회귀 분석**에서 모델의 예측값과 실제 관측값 간의 차이를 정량적으로 평가하는 지표입니다. 이 값은 잔차(residual)를 제곱한 후 모든 관측치에 대해 합산한 것으로, 모델의 적합도를 판단하는 핵심 요소입니다. 잔차 제곱합이 작을수록 모델이 데이터에 잘...
# 선형 최소 제곱법 ## 개요 선형 최소 제곱법(Linear Least Squares)은 통계학과 수학에서 회귀분석의 핵심 기법 중 하나로, 관측된 데이터에 가장 잘 맞는 선형 모델을 추정하기 위해 사용됩니다. 이 방법은 **잔차의 제곱합을 최소화**하여 최적의 회귀 계수를 도출하며, 단순 회귀와 다중 회귀 분석 모두에 적용 가능합니다. 특히, 데이터의...
# p-값 ## 개요 **p-값**(p-value)은 통계적 가설 검정에서 귀무 가설(null hypothesis)이 참일 경우, 관측된 데이터 또는 그보다 더 극단적인 결과가 발생할 확률을 나타냅니다. 이 값은 연구자가 귀무 가설을 기각할지 여부를 판단하는 기준으로 사용되며, 일반적으로 0.05 또는 0.01과 같은 유의 수준(significance l...
# 유체역학 ## 개요 유체역학(Fluid Mechanics)은 액체와 기체를 포함한 유체의 정적 및 동적 거동을 연구하는 물리학의 하위 분야이다. 이 분야는 유체가 외부 힘에 어떻게 반응하는지, 유동 패턴과 압력 분포를 이해하며, 공학, 자연과학, 의학 등 다양한 분야에서 핵심적인 역할을 한다. 유체역학은 고전 물리학의 기초 이론과 현대 기술 개...
# 표준편차 ## 개요 표준편차(Standard Deviation)는 통계학에서 데이터의 분산도를 측정하는 대표적인 지표로, 평균값을 중심으로 데이터가 얼마나 퍼져 있는지를 수치화한 값이다. 이 개념은 과학적 연구, 금융 분석, 공학 등 다양한 분야에서 활용되며, 특히 회귀분석에서 모델의 예측 정확도를 평가하는 데 중요한 역할을 한다. --- ## 정...
# 대수학 ## 개요 대수학(algebra)은 수학의 한 분야로, 수와 기호를 사용하여 수량 간의 관계를 추상화하고 일반화하는 학문이다. 이는 단순한 계산을 넘어 변수, 방정식, 함수 등 복잡한 구조를 탐구하며, 과학, 공학, 컴퓨터 과학 등 다양한 분야에서 필수적인 도구로 활용된다. 대수학은 고대부터 현대까지 수많은 수학자들의 연구를 통해 발전해왔으며,...
# 방정식 ## 개요/소개 방정식은 수학에서 두 표현이 같음을 나타내는 수학적 문장으로, 미지수(변수)와 계수를 포함합니다. 이는 문제 해결을 위한 핵심 도구로, 과학, 공학, 경제 등 다양한 분야에서 활용됩니다. 방정식은 변수의 값을 찾기 위해 해법을 적용하며, 기본 수학 교육에서 필수적인 개념입니다. ## 정의 및 기본 개념 ### 1. 방정식의 구...
# 로짓(Logit) ## 개요 로짓(logit)은 통계학과 데이터 과학에서 중요한 개념으로, 확률(probability)을 **로그-오즈(log-odds)** 형태로 변환하는 함수입니다. 이는 주로 **로지스틱 회귀**(logistic regression)와 같은 분류 모델에서 사용되며, 이진 결과(예: 성공/실패, 승리/패배)를 예측할 때 유용합니다....