# 경제학 경제학은 자원의 희소성과 인간의 무한한 욕구 사이의 균형을 이해하고, 이를 통해 효율적인 자원 배분과적 복지 증진을 추구하는 사회과학의 한 분야입니다. 개인, 기업, 정부 등 다양한 경제 주체가 선택을 어떻게 하고, 그 선택이 시장과 전체 경제에 어떤 영향을 미치는지를 분석합니다. 이 문서에서는 경제학의 기본 개념, 주요 분야, 역사적 발전, ...
검색 결과
"경제학"에 대한 검색 결과 (총 82개)
# 편미분방정식 ## 개요 **편미분방정식**(Partial Differential Equation, 이하 PDE)은 두 개 이상의 독립 변수를 가지는 함수와 그 함수의 **편미분**(partial derivative) 사이의 관계를 나타내는 방정식입니다. 일반 미분방정식(ODE)이 하나의 독립 변수(예: 시간)에 대한 함수의 변화율을 다룬다면, 편미분...
# 일계 상미분방정식 ## 개요 일계 상미분방정식(一階 常微分方程式, First-order Ordinary Differential Equation)은 미분방정식의 한 종류로, 미지 함수의 **일계 도함수**(즉, 첫 번째 도함수)만을 포함하고 있으며, 독립 변수가 하나인 경우를 다룹니다. 일반적인 형태는 다음과 같습니다: $$ \frac{dy}{dx}...
# 다중 선형 회귀 다중 선형 회귀(Multiple Linear Regression)는 하나의 종속 변수(dependent variable)와 두 개 이상의 독립 변수(independent variables) 간의 선형 관계를 모델링하는 통계적 기법이다. 머신러닝과 통계학에서 널리 사용되며, 특히 수치 예측 문제(regression problems)에서 ...
한계수입생산 ## 개요 **한계수입생산**(Marginal Revenue Product, 이하 MRP)은 경제학에서 생산요소의 한 단위를 추가로 투입했을 때 총수입에 얼마나 기여하는지를 나타내는 지표이다. 이 개념은 기업이 노동, 자본, 토지 등 생산요소를 얼마나 고용하거나 투입해야 할지를 결정하는 데 핵심적인 역할을 한다. 특히, 기업이 이윤을 극대화...
# 회귀 계수 회귀 계수(Regression Coefficient)는 회귀분석에서 독립변수(설명변수가 종속변(반응변수에 미치는 영향의 크기와 방을 나타내는 통계량이다. 회귀 계수는귀 모형의심 요소로, 데이터 기반으로 변수 간의 관계를 정량적으로 해석하고 예측하는 데 핵심적인 역할을 한다. 본 문서에서는 회귀 계수의 정의, 종류, 해석 방법, 추정 방식, ...
# 기술 진보 ##요 기술 진보(技術進步, Technological Progress)는 경제 성장의 핵심 동력 중 하나로, 생산 과정에서 동일한 자원을 사용하더라도 더 많은 산출물을 얻을 수 있게 해주는 생산성의 향상을 의미한다. 거시경제학에서 기술 진보는 장기적인 경제 성장률을 결정짓는 가장 중요한 요인 중 하나로 간주되며, 자본 축적과 인구 증가 외...
# SHAP 값 ## 개요 SHAP 값(Shapley Additive exPlanations) 머신러닝 모델의 예측 결과를 해석하기 위한모델 해석성**(Interpretability) 기법 중로, 게임 이론의 **샤플리 값**(Shapley Value) 개념을 기반으로 합니다. SHAP은 각 특성(feature)이 모델의 개별 예측에 기여한 정도를 정량...
# 선형 연립방정 선형 연립방정식( System of Equations)은 여러 개의 선형 방정식이 동시에 성립해야 하는 조건을 나타내는학적 구조로, 선형대수학의 핵심 주제 중 하나입니다. 이는 과학, 공학, 경제학, 컴퓨터 과학 등 다양한 분에서 현실 세계의 문제를 모델링하고 해를 구하는 데 널리 사용됩니다. 본 문서에서는 선형 연립방정식의 정의 표현 ...
# 행렬 ## 개요 **행렬**(Matrix)은학, 특히 **형대수**(Linear)에서 핵심적인으로, 수치나 기호를 직사각형 형태로 배열하여 표현한 구조입니다.렬은 방정식의 계수를계적으로 표현하고, 선형 변환을 기술, 컴퓨터 그래픽스, 통계,신러닝 등 다양한 기술 분야에서 널리 활용됩니다. 행렬은 **행**(row)과 **열**(column)로 구성...
# 행렬-행렬 연산 행렬-행렬 연은 선형대수의 핵심 개념 중 하나로, 두 개 이상 행렬 간에할 수 있는 다양한 수학적 연산을 포함합니다. 이러한 연산 수치해석 컴퓨터 그래픽스, 기계학습, 물리학, 경학 등 다양한 분에서 널리 활용되며, 특히 데이터의 선형 변환과 시스템 해석에 핵심적인 역할을 합니다. 본 문서에서는 행렬 간의 주요 연산인 덧셈, 뺄셈, 곱...
# 수치 연산 개요 **수치 연산**(ical Computation) 수학적 문제를 근사적으로 해결하기 위해 실수나 부동소수점 수를 사용하여 계산을 수행하는 과정을 의미합니다. 이는 해석학적 방법으로 정확한 해를 구하기 어려운 복잡한 수학 문제, 특히 미분 방정식, 선형 대수, 적분, 최적화 등에 대해 컴퓨터를 이용해 근사해를 구하는 데 핵심적인 역할...
# 외생 변수 ## 개요 외생 변수(外生變數, exogenous variable)는 통계학, 특히 회귀분석과 계경제학에서 중요한 개념 중 하나로, 모델 외부에서 결정되며 분석 대상인 모델 내부의 변수에 영향을 미치지만, 모델 내부의 다른 변수로부터 영향을 받지 않는 변수를 의미한다. 외생 변수는 주로 독립변수(independent variable)로 사...
# Forecasting: Principles and Practice ## 개요 **Forecasting: Principles and**(이하 F)는 예측 분석의 기에서 고급 기법까지를 체계적으로 다루는 대적인 데이터과학 서적 중 하나로, 특히 시계열 예측(Time Series Forecasting) 분야에서 널리 활용되는 오픈 액세스(Open Acce...
미분가능미분가능(differentiable)은 미분학에서 매우 개념으로, 함수의 특정 지에서 접선이 존재하고 그 지점에서의 기울기를 잘 정의할 수 있는 성질을 의미한다. 이는 함수의 국소적인율을 분석하는 데 핵심적인 역할 하며, 연성과 함께 미적분학의 기초를 형성한다. 미분가능성은 물리학, 공학, 경제학 등 다양한 분야에서 함수의 행동을 예측하고 최적화 문...
# 에이전트 기반델 ## 개요 에이전트 기반 모**(Agent-Based Model 이하 ABM) 복잡한 시템의 거시 현상을 미시적준의 개별 구성 요소(에이트)들의 행동과 상호작용 통해 시뮬레이션하는 컴퓨터 기반의 모델링 기법이다. 이 모델은통적인 수학 모델링 방식과 달리, 시스템 전체를 설명하는 방정식는 각 구성원의 행동 규칙과 이들이 환경 속에서 어...
# 대수적 표현 ## 개요 대수적 표현(代數的表現, Algebraic)은 수학 변수, 상수,산 기호를 이용하여 수량 사이의 관계를 기로 나타낸 식을 의미한다. 대수적 표현은 방정식, 부등식, 함수 등을 구성하는 기본 단위로, 수학 전반에서 광범위하게 사용된다. 특히 함수의 정의나 수식의 일반화 과정에서 핵심적인 역할을 한다. 대수적 표현은 단순한 계산...
# 회귀 분석## 개요 회귀 분석**( Analysis)은 통계학에서 두 이상의 변수 간의 관계를 모델링하고 분석하는 대표적인 기법이다 주로 하나의종속 변수**(응 변수, dependent variable와 하나 이상의독립 변수**(설 변수, independent variable 사이의 인과 관계 또는 상관 관를 수학적으로 표현하여, 독립 변수의 변화가 ...
# 선형대수 선형대수(Linear Algebra) 수학의 한 분야로, **벡터 공간**(vector spaces),선형 변환**(linear transformations), **행렬**(matrices), **연립일차방정식**(systems of linear equations) 등을 다룹니다. 현대학뿐 아니라 물리학, 컴퓨터 과학, 공학, 경제학, 통계학...
# 산술 평균 개요 **술 평균**(arithmetic mean)은계학에서 가장 기본적이고 널리 사용되는 평균의 형태 중 하나로, 주어진 데이터 집합의 모든 값을 더 후 그 개수로 나누어 얻는 대표값이다. 일반적으로 '평균'이라고 할 때 대부분 산술 평균을 의미하며, 데이터의 중심 경향(central tendency)을 파악하는 데 핵심적인 역할을 한...