가우스 구법 ## 개 **가우스적법**(Gaussian Quadrature)은 수치 적분에서 널리 사용되는 고급 기법으로, 주어진 함수의 정적분을 매우 높은 정확도로 근사하는 방법이다. 이 방법은 특정한 점(절점, nodes)에서 함수 값을 계산하고, 각 점에 적절한 가중치를 부여하여 적분값을 추정한다. 일반적인 사다리꼴 법칙이나 심프슨 법칙과 달리, ...
검색 결과
"수학"에 대한 검색 결과 (총 269개)
# FCS ## 개요 **FCS**(Frame Check Sequence, 프레임 검 순서)는 데이터 통신에서 전송된 프레임(Frame의 무결성을 검사하기 위해 사용되는 오류 검출 기법 중 하나입니다. 주로 링크 계층(Data Link Layer)에서레임 단위로 전송되는 데이터에 대해 전송 중 발생할 수 있는 비트 오류를 탐지하는 데 목적이 있습니다. ...
# 벡터 연산 벡터 연산(Vector Operation)은 데이터과학, 기계학습, 물리학, 컴퓨터 그래픽스 등 다양한 분야에서 핵심적인 역할을 하는 수학적 도구입니다. 특히 고차원 데이터를 처리하는 데이터과학에서는 벡터를 통해 데이터 포인트를 표현하고, 이를 기반으로 유사도 계산, 차원 축소, 모델 학습 등의 작업을 수행합니다. 본 문서에서는 벡터 연산의...
# Credit-Based Shaping **Credit-Based Shaping**(크레딧 기반 대역폭어)은 실시간 네트워크 통신, 특히 **IEEE 8021Qav** 표준에서 정의된 **Time-Sensitive Networking**(TSN) 환경에서 사용되는 대역폭 관리 기법 중 하나입니다. 이 기법은 특정 트래픽 클래스(예: 오디오/비디오 스트림...
# 계산 그래프 **계산 그래프Computational Graph)는 수학적 연산이나 함수의 계산 과정을 **방향성 그래프**(Directed Graph) 형태로 표현한 자료 구조입니다. 이는 인공지능, 특히 딥러 모델의 학습 과정에서 **전파**(Backpropagation)를율적으로 수행하기 위해 핵심적인 역할을 합니다. 계산 그래프는 입력값에서 출력...
# SSE4 **SSE4**(Streaming SIMD Extensions 4) 인텔(Intel)과 AMD가 개발한 x86 아키텍처 기반 프로세서에서 사용되는 SIMD(Single Instruction, Multiple Data) 명령어 집합의 확장판으로, 멀티미디어 처리, 영상 인코딩/코딩, 과학 계산, 압축 알고리즘 다양한 성능 집약적 작업의 효율성을...
# 스펙트럴 방법## 개요 스펙트럴 방법(Spectral Method) 편미분방정(PDE, Partial Differential Equation)의 수치적 해를 구 데 사용되는 고급 수치 해석 기법 중 하나로, 주로 주기적 또는 매끄러운 해를 갖는 문제에 적합하다. 이 방법은 유한 차분법(Finite Difference Method)이나 유한 요소법(Fi...
# One-Class SVM **One-Class SVM**(One-Class Support Vector)은 비지도 학습(Unsupervised Learning) 기반의 이상 탐지(Anomaly Detection) 알고리즘 중 하나로, 주어진 데이터가 정상(normal) 데이터인지, 아니면 이상(anomaly 또는 outlier) 데이터인지를 판단하는 데...
# L2 정규화 개요 **L2 정규화**(2 Regularization), 또는 **리지 정규화**(Ridge Regularization), **중치 감소**(Weight Decay)는 머신러닝 및 딥러닝 모델에서 **과적합**(Overfitting)을 방지하기 위해 사용되는 대표적인 정규화 기법 중 하나입니다. 이 방법은 모델의 가중치에 제약을 가하...
# 다항식 커널 ## 개요 다항식널(Polynomial Kernel)은 **신러닝**, 특히 **서포트 벡터 머신**(Support Vector Machine, SVM)과 같은 커널 기반 알고리즘에서 널리 사용되는 비선형 커널 함수 하나입니다. 이 커은 입력 데이터 간의 유사도를 고차원 공간에서 효과적으로 계산함으로써, 선형적으로 분리되지 않는 복잡한 ...
# 리지 회귀 리지 회귀(Ridge Regression) 선형 회귀 분석의종이지만, **과적합**(overfitting)을 방지하기 위해 정규화(regularization) 기법을 적용한 고급 회귀 모델이다. 특히 독 변수들 사이에 **다중공선성**(multicollinearity)이 존재할 때 일반 선형 회귀보다 더 안정적인 계수 추정을 제공한다. 리지...
# L∞ 노름 ## 개요 L∞ 노름-infinity norm), **최대 노름**(maximum norm), **균등 노름**(uniform norm), **서프리멈 노름**(supremum norm)은 벡터 공간 또는 함수 공간에서 벡터나 함수의 크기를 측정하는 방법 중 하나로, 선형대수학과 함수해석학에서 중요한 역할을 한다. L∞ 노름은 벡터의 성분...
# FORTRAN 7 ## 개요 FORTRAN 7은 **FORTRAN**(****mula ****slation의 약자) 계열의 프로그래밍어 중 하나로, 1978년에 공식적으로 미국국립표준협회(American National Standards, ANSI)에 의해 표준화된 버전. 공식 명칭은 **ANSI X3.9-197**이며, 일반적으로 **FORTRAN...
# 삼각 부등식 ## 개요 **삼각 부등식**(Triangleequality)은 선대수학에서 벡 공간의 노름orm)이 만해야 하는 핵심 성질 중 하나로, 두 벡터의 합의 크기가 각 벡터의 크기의 합보다 작거나 같다는 원리를 수학적으로 표현한 것이다. 이 부등식은 기하학적 직관에서 유래되었으며, 삼각형에서 임의의 두 변의 길이의 합이 세 번째 변의 길이보...
# Haskell Haskell은 함수형 프로그래밍어의 대표적인 예로, 수학적 함수의 개념을 바탕으로 프로그래을 수행하는 고급 언어. 190년에 설계 이래로 순수 함수형 프로그래밍, 게으른 평가(lazy evaluation), 정적 타입 시스템, 타입 추론 등 현대 프로그래밍 언어 연구에 큰 영향을 미친 언어로 평가받고 있습니다. 이 문서는 Haskell...
# 최적의 경계선 ## 개요 **최적 경계선**(Optimal Decision)은 머신러닝, 지도 학습(Supervised Learning)에서 분류(Classification) 문제 해결할 때 사용 핵심 개념 중 하나. 이는 서로 다른 클래스에 속한 데이터 포인트들을 가장 잘 구분할 수 있는 기하학적 경계를 의미합니다. 최적의 경계선은 모델이 새로운 ...
# PDF ## 개요 PDF는 " Density Function"의 약자로, 한국어로는 **확률밀도함수**(確率密度函數라고 한다. 통학과 확률론에서 연속 확률변수의 확률 분포를 설명하는 데 핵심적인 역할을 하는 함수이다. PDF는 특정 값에서 확률변수가 나타날 **상대적인 가능성**을 나타내며, 연속 확률변수의 확률을 구할 때는 특정 구간에 대한 함수의...
# 나노미터 ## 개요 **나노미**(nanometer, 기호:)는 길이의 단위로, 1미터의 10억 분의 1에 해당하는 매우 작은 거리를 나타냅니다. 수학적으로는 $ 1 \, \text{nm} = 10^{-9} \, \text{m} $로 정의되며, 국제단위계(SI)의 접두어 "나노-(nano-)"가 "십억 분의 일"($10^{-9}$)을 의미합니다. 나...
# Global Vectors for Word Representation**Global Vectors for Word RepresentationGloVe) 단어를 고차 벡터 공간에 표현하는 대표적인 **언어 모델링 기법** 중 하나로, 단어 간의 의미적 관계를 수치적으로 포착하는 데 목적을 둔다. GloVe는 분포 가설(Distributional Hypot...
# 의미 분석 의미 분석(Semantic Analysis)은파일러가 소스 코드를 해석하는 과정 중 중요한 단계로, 문법적으로 올바른 코드가 실제로 프로그래밍 언어의 의미 체계에 부합하는지를 검사하는 작업입니다. 이 단계는 구문 분석(Syntax Analysis) 이후에 수행되며, 컴파일러가 프로그램의 논리적 구조와 의미를 이해하고 오류를 탐지하며 최적화를...