# 희소성 ## 개요 **희소성**(Sparsity은 데이터과학 및 머신러닝 분야에서 자주 등장하는 중요한 개념으로, 데이터의 대부분이 **0** 또는 비어 있는 상태를 의미합니다. 즉, 전체 데이터 구조 중에서 실제 유의미한 정보(비영 값)를 가진 요소의 비율이 매우 낮은 경우를 말합니다. 희소성은 텍스트 데이터, 추천 시스템, 네트워크 분석 등 다양...
검색 결과
검색어를 입력하세요.
# 정규방정식 ## 개요 정규방정식(Normal Equation)은 **선형회귀**(Linear Regression) 문제를 해결하기 위한 해석적(analytical) 방법 중 하나로, 최소제곱법(Least Squares Method)을 사용하여 선형 모델의 계수를 직접 계산하는 수식이다. 이 방정식은 손실 함수인 **잔차 제곱합**(Sum of Squ...
# 고차원 희소 데이터 ## 개요 **고차원 희소 데이터**(High-dimensional sparse data)는 데이터 과학 및 머신러닝 분야에서 자주 등장하는 중요한 개념으로, 특성의 수가 매우 많지만 각 데이터 포인트가 실제로 값을 가지는 특성은 극히 일부에 불과한 데이터를 의미한다. 이러한 데이터는 텍스트, 유전자 정보, 추천 시스템, 이미지 ...
# 선형대수 선형대수(Linear Algebra) 수학의 한 분야로, **벡터 공간**(vector spaces),선형 변환**(linear transformations), **행렬**(matrices), **연립일차방정식**(systems of linear equations) 등을 다룹니다. 현대학뿐 아니라 물리학, 컴퓨터 과학, 공학, 경제학, 통계학...
# 행렬-벡터 연산 행렬-벡터산은 선형대수의 핵심 개념 중 하나로, 데이터과학 머신러닝, 컴퓨터 그래픽스, 물리학 등 다양한 분야에서 광범위하게 활용됩니다. 특히 고차원 데이터를 처리하고 변환하는 데 있어 행렬과 벡터의 연산은 계산 효율성과 수학적 표현의 간결성을 제공합니다. 본 문서에서는 행렬-벡터 연산의 정의, 기본 연산 종류 계산 방법, 활용 사례 ...
# Basic Linear Algebra Subprograms **Basic Linear Algebra Subprograms**(BL)는 선형대수 계을 위한 기본적인 연산들을 표화한 인터페이스 사양이다. BLAS는 벡터와렬의 덧셈 스칼라 곱, 내적, 행렬-벡터 곱, 행렬-행렬 곱 등과 같은 수치 선형대수의 핵심 연산들을 정의하며, 과학 계산, 머신러닝, ...
# 여인자 전개 여인자 전개(Cofactor), 또는 라플라스 전개(Laplace Expansion)는 선형대수학 정사각행렬의 **행렬식**(determinant)을 계산하는 대표적인 방법 중 하나입니다. 이 방법은 행렬의 특정 행 또는 열의 원소들과 그에 대응하는 **여인자**(cofactor)를 곱하여 더함으로써 행렬식을 구하는 방식입니다. 특히 크기...
# 공출현 행렬 ## 개요 **공출 행렬**(Co-occurrence)은 자연어처리(Natural Language Processing, NLP) 분야에서 언어의 통계적 구조를 분석하고 단어 간의 의미적 관계를 모델링하는 데 핵심적으로 사용되는 데이터 구조이다. 이 행렬은 특정한 문맥 창(window) 내에서 함께 등장하는 단어들의 빈도를 기록함으로써, ...
행렬식 행렬식**(式, Determinant)은 선형대수학에서 정방행렬(square matrix)에 대응되는 하나의 스칼라 값으로, 행렬의 여러 중요한 성질을 판별하는 데 핵심적인 역할을 한다. 행렬식은 행렬이 가역(invertible)인지 여부, 선형 방정식의 해의 존재성, 벡터 공간에서의 기하학적 해석(예: 부피 변화율) 등과 밀접한 관련이 있다. 이...
# Global Vectors for Word Representation**Global Vectors for Word RepresentationGloVe) 단어를 고차 벡터 공간에 표현하는 대표적인 **언어 모델링 기법** 중 하나로, 단어 간의 의미적 관계를 수치적으로 포착하는 데 목적을 둔다. GloVe는 분포 가설(Distributional Hypot...
# 다변수 체인 규칙 다변수 체인 규칙(Multivariable Chain Rule)은 다변수 미적분학에서 중요한 도구 중 하나로, **여러 변수에 의존하는 함수의 합성 함수를 미분할 때 사용되는 법칙입니다. 이 규칙은 단일 변수 함수의 체인 규칙을 다변수 함수로 확장한 것으로, 물리학, 공학, 경제학 등 다양한 분야에서 함수의 변화율을 분석할 때 핵심적...
# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...
# 추천 시스템 ## 개요 **추천스템**(Recommendation System)은자의 관심사, 행동 패턴, 선호도 등을 분석하여 개인화된 콘텐츠나 아이템을 제안하는 인공지능반의 기술입니다. 이 시템은 사용자가 방대한 정보 속에서 원하는 콘텐츠를 쉽게 발견할 수 있도록 도와주며, 기업 입장에서는 사용자 참여도와 매출을 증대시키는 데 중요한 역할을 합니...
GloVe ##요 **GVe**(Global Vectors for Word)는 스탠포드 대학교의 제프리 펜팅턴(Jeffrey Pennington), 리처드 소처(Richard Socher), 크리스토퍼 맨닝(Christopher D. Manning)이 2014년에 제안한 단어 임베딩(word embedding) 기법입니다. GloVe는 단어의 의미를 실...
# 희소 행렬 ## 개요 **희소 행렬**(Sparse)은 행렬의 대부분의소가 0인 특수한 형태의 행렬을 의미합니다. 일반적으로 수치 계산, 머신러닝, 그래프 이론, 자연어 처리, 네트워크 분석 등 다양한 데이터 과학 분야에서 대규모 데이터를 효율적으로 처리하기 위해 사용됩니다. 희소 행렬은 데이터의 크기가 크지만 실제로 유의미한 정보(0이 아닌 값)를...
# 정밀도 정밀도(Precision)는 인공지능 특히 머신러닝 모델의 성능을 평가하는 핵심 지표 중 하나로, **모델이 긍정 클래스(positive class)로 예측한 샘플 중 실제로 긍정인 샘플의 비율**을 의미합니다. 주로 분류(Classification) 작업에서 사용되며, 특히 불균형 데이터셋(imbalanced dataset)에서 모델의 신뢰도...
# BLAS ## 개요 **BLAS**(Basic Linear Algebra Subprograms, 기본 선형대수 서브프로그램)는 벡터와 행렬 연산을 위한 표준 인터페이스를 정의한 소프트웨어 라이브러리입니다. 주로 수치해석, 과학기술 계산, 머신러닝, 고성능 컴퓨팅(HPC) 분야에서 핵심적인 역할을 하며, 선형대수 계산의 효율성과 성능을 극대화하는 데 ...
# 단어-문서 행렬 ## 개요 **단어-문서 행렬**(Term-Document Matrix, TDM)은 자연어 처리(Natural Language Processing, NLP)와 정보 검색(Information Retrieval) 분야에서 텍스트 데이터를 수치화하여 분석하기 위한 기본적인 데이터 구조 중 하나입니다. 이 행렬은 여러 문서의 집합에서 각 ...
# LAPACK ## 개요 **LAPACK**(Linear Algebra PACKage)은 과학 계산 및 공학 분야에서 널리 사용되는 고성능 수치 선형대수 라이브러리입니다. 주로 행렬 연산, 선형 연립방정의 해법, 고유값 문제, 특이값 분해(SVD), 최소자승법 문제 등을 효율적으로 해결 위해 설계되었습니다. LAPACK은 FORTRAN 77로 작성으며...