검색 결과

"CU"에 대한 검색 결과 (총 452개)

LeNet

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-16 | 조회수 21

# LeNet ## 개요/소개 LeNet은 인공지능 분야에서 가장 초기의 **컨볼루셔널 네트워크(Convolutional Neural Network, CNN)** 중 하나로, 1990년대에 Yann LeCun과 그의 연구팀이 개발한 모델이다. 주로 **손으로 쓴 숫자 인식(OCR)**을 위한 목적으로 설계되었으며, 이는 머신러닝 기술의 발전에 중요한 ...

메모리 셀

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-16 | 조회수 16

# 메모리 셀 ## 개요 메모리 셀(Memory Cell)은 인공지능(AI) 및 기계학습(ML) 분야에서 시퀀스 데이터를 처리하는 데 핵심적인 역할을 하는 구조입니다. 특히, 시간에 따른 정보의 지속적 저장과 활용이 필요한 작업(예: 자연어 처리, 시계열 예측)에서 중요한 기능을 수행합니다. 메모리 셀은 전통적인 인공신경망(ANN)과 달리 과거 입력 데이...

LSTM

과학 > 인공지능 > 머신러닝 | 익명 | 2025-07-16 | 조회수 30

# LSTM ## 개요 LSTM(Long Short-Term Memory)는 시계열 데이터 처리에 특화된 인공지능 기술로, **기존 순환 신경망(RNN)**의 한계를 극복하기 위해 1997년 Hochreiter & Schmidhuber에 의해 제안되었습니다. RNN은 단기 기억을 유지하지만 장기 의존성을 처리하는 데 어려움이 있었고, 이로 인해 **기울기...

무한극한

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 22

# 무한극한 ## 개요 무한극한(infinite limit)은 수학에서 함수의 극한이 유한한 값이 아닌 **무한대(∞)**로 발산하는 경우를 의미합니다. 이 개념은 미적분학에서 함수의 행동 분석, 점근선(漸近線) 탐구, 연속성 판단 등에 핵심적인 역할을 합니다. 무한극한은 수치적으로 정의된 극한이 아닌 **함수의 성질**을 나타내며, 이는 함수가 특정 값...

연쇄법칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 39

# 연쇄법칙 (Chain Rule) ## 개요/소개 연쇄법칙(Chain Rule)은 미적분학에서 복합함수(composite function)의 도함수를 계산하는 기본적인 규칙이다. 두 함수 $ f(x) $와 $ g(x) $가 주어졌을 때, $ h(x) = f(g(x)) $로 정의된 복합함수의 도함수는 $ h'(x) = f'(g(x)) \cdot g'(x)...

나눗셈 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 24

# 나눗셈 규칙 ## 개요 나눗셈 규칙(Quotient Rule)은 미적분학에서 두 함수의 비(商)를 미분할 때 사용하는 기본적인 도함수 계산법이다. 이는 분자와 분모가 각각 다른 함수로 구성된 경우, 단순히 분자와 분모를 따로 미분한 후 나누는 것이 아니라, 특정 공식을 통해 정확하게 도함수를 구할 수 있도록 한다. 본 문서에서는 나눗셈 규칙의 ...

곱셈 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 21

# 곱셈 규칙 (Product Rule) ## 개요 곱셈 규칙은 미적분학에서 두 함수의 곱을 미분할 때 사용하는 기본적인 도함수 계산법이다. 이 규칙은 단순히 각 함수를 별도로 미분한 후 곱하는 것이 아니라, **첫 번째 함수의 도함수와 두 번째 함수의 곱**과 **첫 번째 함수와 두 번째 함수의 도함수의 곱**을 더해야 한다는 점에서 중요하다. 이 규칙...

극한

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 38

# 극한 ## 개요 극한(limit)은 수학에서 함수의 행동을 분석하는 데 핵심적인 개념으로, 특정 점에 가까운 입력값에 대한 출력값의 추세를 나타냅니다. 미적분학의 기초가 되며, 도함수와 적분의 정의에 필수적이며, 물리학, 공학 등 다양한 분야에서 응용됩니다. 극한은 수렴과 발산을 이해하는 데 중요한 역할을 하며, 함수의 연속성, 미분 가능성 등...

적분법

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 29

# 적분법 ## 개요 적분법(integral calculus)은 미적분학의 핵심 분야로, 함수의 **적분**을 연구하는 수학 이론이다. 주로 곡선 아래의 넓이, 부피, 누적량 등을 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 적분은 미분과 반대되는 개념으로, **미분 방정식**을 해결하거나 함수의 원시함수를 찾는 데 필수적...

미분법

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 31

# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...

도함수

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 29

# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...

도함수

기술 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 18

# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...

표준편차

과학 > 통계학 > 회귀분석 | 익명 | 2025-07-16 | 조회수 25

# 표준편차 ## 개요 표준편차(Standard Deviation)는 통계학에서 데이터의 분산도를 측정하는 대표적인 지표로, 평균값을 중심으로 데이터가 얼마나 퍼져 있는지를 수치화한 값이다. 이 개념은 과학적 연구, 금융 분석, 공학 등 다양한 분야에서 활용되며, 특히 회귀분석에서 모델의 예측 정확도를 평가하는 데 중요한 역할을 한다. --- ## 정...

미적분학

교육 > 수학 > 고등수학 | 익명 | 2025-07-15 | 조회수 33

# 미적분학 ## 개요 미적분학은 수학의 중요한 분야로, 변화율과 누적량을 연구하는 학문이다. 고등학교 수학에서 필수적인 내용으로, 함수의 극한, 도함수, 적분 등을 다루며 과학, 공학, 경제학 등 다양한 분야에 응용된다. 이 문서는 미적분학의 기초 개념부터 실제 적용까지 체계적으로 설명한다. --- ## 1. 미적분학의 역사와 개발 ### 1.1 고...

미적분학

교육 > 수학 > 통계 | 익명 | 2025-07-15 | 조회수 33

# 미적분학 ## 개요 미적분학(calculus)은 수학의 중요한 분야로, 변화와 누적을 연구하는 학문이다. 17세기에 뉴턴(Isaac Newton)과 라이프니츠(Gottfried Wilhelm Leibniz)에 의해 체계화된 이 분야는 물리학, 공학, 경제학 등 다양한 과학 분야에서 필수적인 도구로 사용된다. 미적분학은 **미분**과 **적분** 두 가...

다육식물

농업 > 재배 기술 > 식물 재배 | 익명 | 2025-07-15 | 조회수 19

# 다육식물 ## 개요 다육식물은 수분 저장 조직을 통해 건조한 환경에 적응한 식물로, 주로 열대 및 아열대 지역에서 자생합니다. 이들은 두꺼운 줄기나 잎으로 물을 저장하며, 토양의 수분이 부족할 때 생존을 위한 특수한 구조를 가집니다. 농업 분야에서는 관상용과 식용 목적(예: 알로에)으로 널리 재배되며, 환경 적응력과 유지 관리의 간편함이 특징입니다. ...

관상용 식물

농업 > 재배 방법 > 묘목 선택 | 익명 | 2025-07-15 | 조회수 21

# 관상용 식물의 묘목 선택 ## 개요 관상용 식물은 정원, 공공 공간, 실내 환경에서 미적 가치와 생태적 기능을 동시에 제공하는 식물로, 농업 및 환경 관리에서 중요한 역할을 합니다. 묘목 선택은 관상용 식물의 성장과 건강에 직접적인 영향을 주며, 적절한 묘목 선정은 병해충 저항성 향상, 생육 효율 증대, 장기적인 관리 용이성을 보장합니다. 본 ...

접합 왁스

농업 > 재배 기술 > 접합 기법 | 익명 | 2025-07-15 | 조회수 21

# 접합 왁스 ## 개요/소개 접합 왁스(Grafting Wax)는 식물의 접합(grafting) 과정에서 사용되는 보호용 코팅 물질로, 접합 부위의 수분 손실 방지와 병원균 침투 차단을 목적으로 합니다. 이는 농업 및 정원 가꾸기에서 중요한 기술 중 하나로, 특히 열대 과일나무(예: 오렌지, 포도)나 관상용 식물의 재배에 널리 활용됩니다. 접합 왁스...

바로미터

기술 > 측정 기술 > 측정 도구 | 익명 | 2025-07-14 | 조회수 33

# 바로미터 ## 개요 바로미터는 대기압을 측정하는 기구로, 기상학, 항공, 과학 연구 등 다양한 분야에서 필수적인 도구이다. 17세기에 첫 번째 바로미터가 개발된 이래, 기술 발전에 따라 여러 종류의 측정 방식이 도입되었다. 대기압은 날씨 예보, 고도 측정, 기후 변화 분석 등에 중요한 역할을 하며, 바로미터는 이러한 데이터를 정확하게 제공하는 데 기여...

내연기관

기술 > 자동차 > 엔진 | 익명 | 2025-07-14 | 조회수 25

# 내연기관 ## 개요 내연기관(Internal Combustion Engine)은 연료를 실린더 내부에서 직접 연소시켜 기계적 에너지를 생성하는 엔진의 일종이다. 이는 자동차, 항공기, 선박 등 다양한 분야에서 핵심적인 역할을 하며, 19세기 후반부터 현대까지 지속적으로 발전해왔다. 내연기관은 연료의 화학 에너지를 열에너지로 변환한 뒤, 이를 기계적 운...