# Ansible ## 개요 Ansible은 **에이전트리스(Agentless)** 기반의 오픈소스 자동화 도구로, 서버 구성 관리, 애플리케이션 배포, 클라우드 환경 조정 등 다양한 IT 작업을 자동화하는 데 사용됩니다. Python으로 개발되었으며, SSH 프로토콜을 통해 네트워크 장비와 서버를 관리합니다. 복잡한 설치 과정 없이 간단한 YAML 파일...
검색 결과
"변수"에 대한 검색 결과 (총 365개)
# p-값 ## 개요 **p-값**(p-value)은 통계적 가설 검정에서 귀무 가설(null hypothesis)이 참일 경우, 관측된 데이터 또는 그보다 더 극단적인 결과가 발생할 확률을 나타냅니다. 이 값은 연구자가 귀무 가설을 기각할지 여부를 판단하는 기준으로 사용되며, 일반적으로 0.05 또는 0.01과 같은 유의 수준(significance l...
# Python ## 개요 Python은 1991년 Guido van Rossum에 의해 처음 제안된 고수준 프로그래밍 언어로, **간결한 문법**, **다양한 응용 분야**, **활발한 커뮤니티**로 유명합니다. 객체지향, 함수형, 절차적 프로그래밍을 모두 지원하며, 특히 데이터 과학, 인공지능(AI), 웹 개발, 자동화 등 다양한 영역에서 널리...
# 위키 문법 ## 개요 위키 문법(Wiki Syntax)은 위키 웹사이트에서 콘텐츠를 작성하고 형식을 지정하기 위해 사용되는 가벼운 마크업 언어입니다. 이는 HTML과 같은 전통적인 프로그래밍 언어보다 간단한 규칙을 기반으로 하여, 비전문가도 쉽게 문서를 생성하고 편집할 수 있도록 설계되었습니다. 위키 문법은 주로 **텍스트 기반의 형식 지정**을 지원...
# CGI (Common Gateway Interface) ## 개요 CGI(공통 게이트웨이 인터페이스)는 웹 서버와 외부 애플리케이션 간의 통신을 표준화한 인터페이스입니다. 1993년 미국 국립 과학 재단(NCSA)에서 개발된 이 기술은 동적 콘텐츠 생성, 사용자 입력 처리 등 서버측 작업을 가능하게 하며, 웹 기술 발전의 초기 단계에서 핵심 역할을 했...
# Perl ## 개요 Perl은 1987년에 라리 월(Larry Wall)이 개발한 프로그래밍 언어로, 텍스트 처리와 시스템 관리에 특화된 고급 스크립팅 언어이다. 초기에는 UNIX 환경에서의 텍스트 분석을 위한 도구로 설계되었으나, 현재는 웹 개발, 네트워크 프로그래밍, 데이터 분석 등 다양한 분야에서 활용되고 있다. Perl은 유연한 문법과 강력한 ...
# 필터 ## 개요 필터는 데이터 과학에서 중요한 역할을 하는 기술로, 원치 않는 정보를 제거하거나 특정 조건에 부합하는 데이터만 추출하는 과정을 의미합니다. 이는 데이터 정제, 특성 선택, 신호 처리 등 다양한 분야에서 활용되며, 분석의 정확도와 효율성을 높이는 데 기여합니다. 필터는 단순한 수학적 연산부터 복잡한 머신러닝 모델까지 다양한 형태로 구현됩...
# 연쇄법칙 (Chain Rule) ## 개요/소개 연쇄법칙(Chain Rule)은 미적분학에서 복합함수(composite function)의 도함수를 계산하는 기본적인 규칙이다. 두 함수 $ f(x) $와 $ g(x) $가 주어졌을 때, $ h(x) = f(g(x)) $로 정의된 복합함수의 도함수는 $ h'(x) = f'(g(x)) \cdot g'(x)...
# 적분법 ## 개요 적분법(integral calculus)은 미적분학의 핵심 분야로, 함수의 **적분**을 연구하는 수학 이론이다. 주로 곡선 아래의 넓이, 부피, 누적량 등을 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 적분은 미분과 반대되는 개념으로, **미분 방정식**을 해결하거나 함수의 원시함수를 찾는 데 필수적...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...
# 표준편차 ## 개요 표준편차(Standard Deviation)는 통계학에서 데이터의 분산도를 측정하는 대표적인 지표로, 평균값을 중심으로 데이터가 얼마나 퍼져 있는지를 수치화한 값이다. 이 개념은 과학적 연구, 금융 분석, 공학 등 다양한 분야에서 활용되며, 특히 회귀분석에서 모델의 예측 정확도를 평가하는 데 중요한 역할을 한다. --- ## 정...
# 대수학 ## 개요 대수학(algebra)은 수학의 한 분야로, 수와 기호를 사용하여 수량 간의 관계를 추상화하고 일반화하는 학문이다. 이는 단순한 계산을 넘어 변수, 방정식, 함수 등 복잡한 구조를 탐구하며, 과학, 공학, 컴퓨터 과학 등 다양한 분야에서 필수적인 도구로 활용된다. 대수학은 고대부터 현대까지 수많은 수학자들의 연구를 통해 발전해왔으며,...
# 방정식 ## 개요/소개 방정식은 수학에서 두 표현이 같음을 나타내는 수학적 문장으로, 미지수(변수)와 계수를 포함합니다. 이는 문제 해결을 위한 핵심 도구로, 과학, 공학, 경제 등 다양한 분야에서 활용됩니다. 방정식은 변수의 값을 찾기 위해 해법을 적용하며, 기본 수학 교육에서 필수적인 개념입니다. ## 정의 및 기본 개념 ### 1. 방정식의 구...
# 연산 ## 개요 연산(Operations)은 수학과 통계에서 데이터를 처리하고 분석하기 위해 사용되는 기본적인 계산 및 논리적 절차를 의미합니다. 이는 단순한 산술 계산부터 복잡한 통계 모델링까지 다양한 영역에 적용되며, 데이터의 특성 파악과 결과 도출에 필수적인 역할을 합니다. 본 문서에서는 연산의 주요 유형, 통계 분야에서의 활용 방식, 그...
# 미적분학 ## 개요 미적분학(calculus)은 수학의 중요한 분야로, 변화와 누적을 연구하는 학문이다. 17세기에 뉴턴(Isaac Newton)과 라이프니츠(Gottfried Wilhelm Leibniz)에 의해 체계화된 이 분야는 물리학, 공학, 경제학 등 다양한 과학 분야에서 필수적인 도구로 사용된다. 미적분학은 **미분**과 **적분** 두 가...
# 수학 ## 개요 수학은 양, 구조, 공간 및 변화와 같은 추상적 개념을 탐구하는 체계적인 학문이다. 고대부터 현대까지 인간의 사고와 과학 기술 발전에 깊이 관여하며, 자연과학, 공학, 경제학 등 다양한 분야에서 필수적인 도구로 활용된다. 수학은 **기초수학**과 **심화수학**으로 나뉘며, 본 문서에서는 기초수학의 핵심 개념과 역사적 배경을 중심으로 ...
# 로짓(Logit) ## 개요 로짓(logit)은 통계학과 데이터 과학에서 중요한 개념으로, 확률(probability)을 **로그-오즈(log-odds)** 형태로 변환하는 함수입니다. 이는 주로 **로지스틱 회귀**(logistic regression)와 같은 분류 모델에서 사용되며, 이진 결과(예: 성공/실패, 승리/패배)를 예측할 때 유용합니다....
# 입력 게이트 ## 개요 입력 게이트는 인공지능 분야에서 특히 **장기 기억 유닛**(LSTM)과 같은 **순환 신경망**(RNN) 구조에서 핵심적인 역할을 하는 구성 요소이다. 이 게이트는 시퀀스 데이터 처리 중 새로운 정보가 어떻게 저장되는지를 제어하며, 장기 의존성을 관리하는 데 기여한다. 입력 게이트의 작동 원리는 신경망의 **세포 상태**(ce...
# 결측치 ## 개요 결측치(Missing Values)는 데이터 수집 또는 처리 과정에서 특정 값이 누락된 상태를 의미합니다. 이는 데이터 분석 및 머신러닝 모델의 정확도와 신뢰성에 중대한 영향을 미칠 수 있으며, 적절한 대응 전략이 필수적입니다. 결측치는 다양한 원인으로 발생할 수 있으며, 이를 이해하고 처리하는 것은 데이터 과학에서 중요한 단계입니다...
# 범주형 데이터 포인트 ## 개요 범주형 데이터 포인트(Categorical Data Point)는 특정 변수가 **명확한 범주** 또는 **그룹**에 속하는 값을 가지는 데이터 유형이다. 이는 수치적 정보보다는 **분류**나 **속성**을 나타내며, 데이터 과학에서 분석 전처리 및 모델링 단계에서 중요한 역할을 한다. 예를 들어, "성별(남/여)", ...