검색 결과

"함수"에 대한 검색 결과 (총 343개)

무한극한

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 23

# 무한극한 ## 개요 무한극한(infinite limit)은 수학에서 함수의 극한이 유한한 값이 아닌 **무한대(∞)**로 발산하는 경우를 의미합니다. 이 개념은 미적분학에서 함수의 행동 분석, 점근선(漸近線) 탐구, 연속성 판단 등에 핵심적인 역할을 합니다. 무한극한은 수치적으로 정의된 극한이 아닌 **함수의 성질**을 나타내며, 이는 함수가 특정 값...

연쇄법칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 41

# 연쇄법칙 (Chain Rule) ## 개요/소개 연쇄법칙(Chain Rule)은 미적분학에서 복합함수(composite function)의 도함수를 계산하는 기본적인 규칙이다. 두 함수 $ f(x) $와 $ g(x) $가 주어졌을 때, $ h(x) = f(g(x)) $로 정의된 복합함수의 도함수는 $ h'(x) = f'(g(x)) \cdot g'(x)...

나눗셈 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 27

# 나눗셈 규칙 ## 개요 나눗셈 규칙(Quotient Rule)은 미적분학에서 두 함수의 비(商)를 미분할 때 사용하는 기본적인 도함수 계산법이다. 이는 분자와 분모가 각각 다른 함수로 구성된 경우, 단순히 분자와 분모를 따로 미분한 후 나누는 것이 아니라, 특정 공식을 통해 정확하게 도함수를 구할 수 있도록 한다. 본 문서에서는 나눗셈 규칙의 ...

곱셈 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 23

# 곱셈 규칙 (Product Rule) ## 개요 곱셈 규칙은 미적분학에서 두 함수의 곱을 미분할 때 사용하는 기본적인 도함수 계산법이다. 이 규칙은 단순히 각 함수를 별도로 미분한 후 곱하는 것이 아니라, **첫 번째 함수의 도함수와 두 번째 함수의 곱**과 **첫 번째 함수와 두 번째 함수의 도함수의 곱**을 더해야 한다는 점에서 중요하다. 이 규칙...

극한

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 44

# 극한 ## 개요 극한(limit)은 수학에서 함수의 행동을 분석하는 데 핵심적인 개념으로, 특정 점에 가까운 입력값에 대한 출력값의 추세를 나타냅니다. 미적분학의 기초가 되며, 도함수와 적분의 정의에 필수적이며, 물리학, 공학 등 다양한 분야에서 응용됩니다. 극한은 수렴과 발산을 이해하는 데 중요한 역할을 하며, 함수의 연속성, 미분 가능성 등...

적분법

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 30

# 적분법 ## 개요 적분법(integral calculus)은 미적분학의 핵심 분야로, 함수의 **적분**을 연구하는 수학 이론이다. 주로 곡선 아래의 넓이, 부피, 누적량 등을 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 적분은 미분과 반대되는 개념으로, **미분 방정식**을 해결하거나 함수의 원시함수를 찾는 데 필수적...

미분법

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 33

# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...

피타고라스 정리

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 15

# 피타고라스 정리 ## 개요 피타고라스 정리는 직각삼각형의 세 변 사이의 관계를 설명하는 기하학적 정리로, 수학 역사상 가장 유명한 공식 중 하나이다. 이는 "직각삼각형에서 빗변의 제곱은 다른 두 변의 제곱의 합과 같다"는 내용을 담고 있으며, 삼각법, 물리학, 공학 등 다양한 분야에 응용된다. 정리는 고대 그리스 수학자 피타고라스(Πυθαγόρας)에...

좌표기하

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 16

# 좌표기하 ## 개요 좌표기하는 수학의 기하학 분야에서 **직교좌표계**를 활용하여 도형을 대수적 방식으로 표현하고 분석하는 방법론이다. 이는 17세기에 르네 드카르트(René Descartes)가 고안한 해석기하(Analytic Geometry)의 핵심 개념으로, 기존의 순수 기하학과 대수학을 통합하여 수학적 문제를 해결하는 데 중요한 도구로 사용된다...

대수학

교육 > 수학 > 대수학 | 익명 | 2025-07-16 | 조회수 25

# 대수학 ## 개요 대수학(algebra)은 수학의 한 분야로, 수와 기호를 사용하여 수량 간의 관계를 추상화하고 일반화하는 학문이다. 이는 단순한 계산을 넘어 변수, 방정식, 함수 등 복잡한 구조를 탐구하며, 과학, 공학, 컴퓨터 과학 등 다양한 분야에서 필수적인 도구로 활용된다. 대수학은 고대부터 현대까지 수많은 수학자들의 연구를 통해 발전해왔으며,...

정수

교육 > 수학 > 기초수학 | 익명 | 2025-07-15 | 조회수 30

# 정수 ## 개요 정수는 수학에서 가장 기본적인 숫자 집합 중 하나로, **0과 양의 정수, 음의 정수**를 포함합니다. 정수는 자연수(1, 2, 3, ...)와 그 반대 방향의 음의 정수(-1, -2, -3, ...) 그리고 0을 모두 포함하는 집합입니다. 이 문서에서는 정수의 정의, 성질, 역사적 배경, 연산 규칙, 실생활 적용 등을 체계적으로 탐구...

미적분학

교육 > 수학 > 고등수학 | 익명 | 2025-07-15 | 조회수 35

# 미적분학 ## 개요 미적분학은 수학의 중요한 분야로, 변화율과 누적량을 연구하는 학문이다. 고등학교 수학에서 필수적인 내용으로, 함수의 극한, 도함수, 적분 등을 다루며 과학, 공학, 경제학 등 다양한 분야에 응용된다. 이 문서는 미적분학의 기초 개념부터 실제 적용까지 체계적으로 설명한다. --- ## 1. 미적분학의 역사와 개발 ### 1.1 고...

연산

교육 > 수학 > 통계 | 익명 | 2025-07-15 | 조회수 29

# 연산 ## 개요 연산(Operations)은 수학과 통계에서 데이터를 처리하고 분석하기 위해 사용되는 기본적인 계산 및 논리적 절차를 의미합니다. 이는 단순한 산술 계산부터 복잡한 통계 모델링까지 다양한 영역에 적용되며, 데이터의 특성 파악과 결과 도출에 필수적인 역할을 합니다. 본 문서에서는 연산의 주요 유형, 통계 분야에서의 활용 방식, 그...

미적분학

교육 > 수학 > 통계 | 익명 | 2025-07-15 | 조회수 34

# 미적분학 ## 개요 미적분학(calculus)은 수학의 중요한 분야로, 변화와 누적을 연구하는 학문이다. 17세기에 뉴턴(Isaac Newton)과 라이프니츠(Gottfried Wilhelm Leibniz)에 의해 체계화된 이 분야는 물리학, 공학, 경제학 등 다양한 과학 분야에서 필수적인 도구로 사용된다. 미적분학은 **미분**과 **적분** 두 가...

수학

교육 > 수학 > 기초수학 | 익명 | 2025-07-15 | 조회수 45

# 수학 ## 개요 수학은 양, 구조, 공간 및 변화와 같은 추상적 개념을 탐구하는 체계적인 학문이다. 고대부터 현대까지 인간의 사고와 과학 기술 발전에 깊이 관여하며, 자연과학, 공학, 경제학 등 다양한 분야에서 필수적인 도구로 활용된다. 수학은 **기초수학**과 **심화수학**으로 나뉘며, 본 문서에서는 기초수학의 핵심 개념과 역사적 배경을 중심으로 ...

로짓

기술 > 데이터과학 > 분석 | 익명 | 2025-07-14 | 조회수 18

# 로짓(Logit) ## 개요 로짓(logit)은 통계학과 데이터 과학에서 중요한 개념으로, 확률(probability)을 **로그-오즈(log-odds)** 형태로 변환하는 함수입니다. 이는 주로 **로지스틱 회귀**(logistic regression)와 같은 분류 모델에서 사용되며, 이진 결과(예: 성공/실패, 승리/패배)를 예측할 때 유용합니다....

L1 정규화

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-14 | 조회수 27

# L1 정규화 ## 개요/소개 L1 정규화(L1 Regularization)는 머신러닝 모델의 과적합(overfitting)을 방지하기 위해 사용되는 중요한 기법 중 하나입니다. 이 방법은 모델의 파라미터(계수)에 절대값을 기반으로 페널티를 추가하여, 불필요한 특성(feature)을 제거하고 모델의 단순성을 유지합니다. L1 정규화는 특히 **스파시...

컨볼루션 신경망

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-14 | 조회수 24

# 컨볼루션 신경망 ## 개요 컨볼루션 신경망(Convolutional Neural Network, CNN)은 이미지 처리 및 컴퓨터 비전 분야에서 널리 사용되는 인공신경망의 한 종류입니다. 주로 2차원 또는 3차원 데이터(예: 이미지, 영상)를 자동으로 특징을 추출하고 분류하는 데 효과적입니다. CNN은 계층 구조를 통해 입력 데이터에서 계층적인...

딥러닝

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-14 | 조회수 25

# 딥러닝 ## 개요 딥러닝(Deep Learning)은 인공지능(AI)의 하위 분야로, 인간의 뇌 구조를 모방한 신경망(Neural Network)을 기반으로 데이터에서 복잡한 패턴을 학습하는 기술입니다. 2010년대 이후 컴퓨팅 파워와 대량 데이터의 확보로 급속히 발전하며, 컴퓨터 비전, 자연어 처리(NLP), 음성 인식 등 다양한 분야에서 혁신적인 ...

출력 게이트

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-14 | 조회수 28

# 출력 게이트 ## 개요 출력 게이트(Output Gate)는 인공지능 분야에서 특히 **장기 기억 유닛(LSTM)**과 같은 순환 신경망(RNN) 구조에서 중요한 역할을 하는 기술적 요소이다. 이 개념은 시계열 데이터 처리, 자연어 이해 등 복잡한 패턴 인식 작업에 필수적이며, 신경망의 내부 상태를 조절하는 데 핵심적인 기능을 수행한다. 본 문서에서는...