SciPy ## 개요 **SciPy**(Science Python) 과학적 계산 및 수치석을 위한 파썬의 핵심 라이러리 중 하나로, NumPy를 기반으로 하여 고급 수학적 알고리즘과 수치적 기법을 제공합니다. 데이터 과학, 공학, 물리학, 통계학 등 다양한 분야에서 복잡한 계산을 효율적으로 수행할 수 있도록 설계되어 있으며, 오픈소스 프로젝트로 개발자 ...
검색 결과
"SciPy"에 대한 검색 결과 (총 25개)
# SciPy ## 개요 **SciPy**(Science Python)는 과학적 및 기술적 계산을 위한 파이썬 기반의 오픈소스 소프트웨어 생태계의 핵심 구성 요소 중 하나입니다 SciPy는 수치 계산, 최적화, 선형 대수, 적분, 보간, 신호 처리, 통계 분석 등 다양한 수학적 및 과학적 문제 해결을 위한 강력한 함수와 알고리즘을 제공합니다. SciPy...
# SciPy ## 개요 **SciPy**(Science Python)는 파이썬 기반의 오픈소스 과학 계산 라이브러리로, 수치 계산, 최적화 통계, 신 처리, 선형 대수, 적분, 미분 방정식 해법 등 다양한 과학 및 공학 문제를 해결하기 위한 고수준의 알고리즘과 수학적 도구를 제공합니다. SciPy는 NumPy를 기반으로 하며, 과학기술 컴퓨팅(Scie...
# Basic Linear Algebra Subprograms **Basic Linear Algebra Subprograms**(BL)는 선형대수 계을 위한 기본적인 연산들을 표화한 인터페이스 사양이다. BLAS는 벡터와렬의 덧셈 스칼라 곱, 내적, 행렬-벡터 곱, 행렬-행렬 곱 등과 같은 수치 선형대수의 핵심 연산들을 정의하며, 과학 계산, 머신러닝, ...
가우스 구법 ## 개 **가우스적법**(Gaussian Quadrature)은 수치 적분에서 널리 사용되는 고급 기법으로, 주어진 함수의 정적분을 매우 높은 정확도로 근사하는 방법이다. 이 방법은 특정한 점(절점, nodes)에서 함수 값을 계산하고, 각 점에 적절한 가중치를 부여하여 적분값을 추정한다. 일반적인 사다리꼴 법칙이나 심프슨 법칙과 달리, ...
# 스펙트럴 방법## 개요 스펙트럴 방법(Spectral Method) 편미분방정(PDE, Partial Differential Equation)의 수치적 해를 구 데 사용되는 고급 수치 해석 기법 중 하나로, 주로 주기적 또는 매끄러운 해를 갖는 문제에 적합하다. 이 방법은 유한 차분법(Finite Difference Method)이나 유한 요소법(Fi...
# 신호 처리 신호 처리(Signal Processing)는 물리적 현상이나 시스템에서 발생하는 신호를 분석, 변환, 조작하여 유용한 정보를 추출하거나 신호의 품질 향상시키는 기술 및 학문 분야이다. 신호는 시간 또는 공간에 따라 변화하는 물리량으로, 음성, 이미지, 전압, 진동, 전파 등 다양한 형태로 나타날 수 있다. 신호 처리는 통신, 의료 영상, ...
# A/B 테스트 ## 개요 **A/B 테스트**(A/B Testing)는 두 개 이상의 변형(예: 버전 A와 버전 B)을 비교하여 어떤 것이 더 나은 성과를 내는지 판단하는 **통계적 가설 검정 방법**입니다. 주로 웹사이트, 모바일 앱, 마케팅 캠페인, 제품 기능 등에서 사용자 행동에 미치는 영향을 분석하기 위해 활용되며, 데이터 기반 의사결정(Da...
# NumPy NumPy( erical Python의 약자)는 파이썬에서 과학적 계산을 수행하기 위한 핵심 라이브러리로, 대규모치 데이터를 효율적으로 처리할 수 있는 다차 배열 객체(`nd`)와 이를 다루기 위한 다양한 수학 함수를 제공합니다. 특히 데이터과학, 머신러닝, 물리학, 공학 등 다양한 분야에서 기본 도구로 사용되며, Pandas, SciPy,...
# smoothing parameter ## 개요 **Smoothing parameter**(스무딩 파라터)는 머신러닝 및계 모델링에서 데이터의 노이즈ise)를 줄 모델의 일반화능을 향상시키기 위해 사용되는 중요한 하이퍼파라미터입니다. 이 파라미터 모델이 데이터에 **과적합overfitting)되는 것을 방지하고, 관측된 데이터의 불확실성이나 변동성을 ...
# Numerical Recipes ## 개 *Numerical*는 과학 및 공학 분야에서 수치해석 알고리즘을 실제 문제에 적용하기 위한 전문 서적 시리즈이자 소프트웨어 라이브러리의 총체를 의미한다. 1986년 최초로 출간된 이래로 물리학, 천문학, 공학, 생물정보학 등 다양한 분야의 연구자와 엔지니어들에게 널리 사용되어 왔으며, 특히 수치적 계산의 이...
# 희소 행렬 ## 개요 **희소 행렬**(Sparse)은 행렬의 대부분의소가 0인 특수한 형태의 행렬을 의미합니다. 일반적으로 수치 계산, 머신러닝, 그래프 이론, 자연어 처리, 네트워크 분석 등 다양한 데이터 과학 분야에서 대규모 데이터를 효율적으로 처리하기 위해 사용됩니다. 희소 행렬은 데이터의 크기가 크지만 실제로 유의미한 정보(0이 아닌 값)를...
# BLAS ## 개요 **BLAS**(Basic Linear Algebra Subprograms, 기본 선형대수 서브프로그램)는 벡터와 행렬 연산을 위한 표준 인터페이스를 정의한 소프트웨어 라이브러리입니다. 주로 수치해석, 과학기술 계산, 머신러닝, 고성능 컴퓨팅(HPC) 분야에서 핵심적인 역할을 하며, 선형대수 계산의 효율성과 성능을 극대화하는 데 ...
# Matplotlib Matplotlib은 파이썬 기반의 강력하고 유연한 2D 그래프 및 데이터 시각화 라이브러리로, 과학 계산, 데이터 분석, 머신러닝 등 다양한 분야에서 널리 사용되고 있습니다. NumPy와 잘 통합되며, MATLAB과 유사한 인터페이스를 제공하여 사용자가 익숙하게 접근할 수 있습니다. 복잡한 데이터를 직관적으로 표현할 수 있도록 다...
# NumPy ## 개요 **NumPy**(Numerical Python)는 파이썬에서 과학적 계산을 위한 핵심 라이브러리로, 대규모 수치 데이터를 효율적으로 처리할 수 있도록 다차 배열과 다양한 수학적 연산 기능을 제공합니다. NumPy는 데이터 과학, 머신러닝, 공학, 물리학 등 다양한 분야에서 기초 도구로 사용되며, pandas, SciPy, sc...
# SVD (특이값 분해) **SVD**(Singular Value Decomposition, 특이값 분해)는 선형대수학에서 행렬을 특정한 형태로 분해하는 기법으로, 수치해석, 데이터 과학, 기계학습, 신호 처리 등 다양한 분야에서 핵심적인 역할을 하는 수학적 도구입니다. SVD는 임의의 실수 또는 복소수 행렬을 세 개의 특수한 행렬의 곱으로 분해함으로써...
# LAPACK ## 개요 **LAPACK**(Linear Algebra PACKage)은 과학 계산 및 공학 분야에서 널리 사용되는 고성능 수치 선형대수 라이브러리입니다. 주로 행렬 연산, 선형 연립방정의 해법, 고유값 문제, 특이값 분해(SVD), 최소자승법 문제 등을 효율적으로 해결 위해 설계되었습니다. LAPACK은 FORTRAN 77로 작성으며...
# Pandas ## 개요**Pandas** 파이썬(Python) 기반의력한 **데이터 분석 및 데이터 조작 라이브러리**로, 데이터 과학, 통계 분석, 머러닝, 금융 분석 등 다양한야에서 널리 사용되고 있습니다 Pandas는 고성능의 데이터 구조와 데이터 분석 도구를 제공하여 정형 및 반정형 데이터를 쉽게 처리할 수 있도록 설계되었습니다. 특히 **Da...
# BFGS **BFGS**(Broyden–Fletcher–Goldfarb–Shanno 알고리즘은 비선형 최적화 문제에서 널리 사용되는 준뉴턴(Quasi-Newton) 방법 중 하나로, 목적 함수의 최소값을 반복적으로 탐색하는 데 효과적입니다. 특히, 목적 함수의 2차 미분(헤시안 행렬)을 직접 계산하지 않고도 뉴턴 방법과 유사한 수렴 성능을 달성할 수 ...
과학 계산 ## 개요 **과학 계산**(Scientific Computing)은 수학, 물리, 공학,물학 등 다양한 과 분야의 문제를 해결하기 위해 컴퓨터를 활용하는 학문 분야. 이는 복한 수학적 모을 수치적으로 해석하고, 실제 현상을 시뮬레이션하거나 예측하는 데 중심적인 역할을 한다. 과학 계산은 이론적 분석과 실험적 관찰에 더해 **제3의 과학 방법...