수직 점근선
# 수직 점근선 ## 개요 수직 점근선(vertical asymptote)은 함수의프가 특정 수직에 무한히까워지면서 그을 지나지 않는 현상을 말. 수직 점선은 함수가 정의되지 않거나 무한대로 발산하는 점에서 발생하며, 주로 유리함수, 로그함수, 삼각함수 등의 함수에...
# 수직 점근선 ## 개요 수직 점근선(vertical asymptote)은 함수의프가 특정 수직에 무한히까워지면서 그을 지나지 않는 현상을 말. 수직 점선은 함수가 정의되지 않거나 무한대로 발산하는 점에서 발생하며, 주로 유리함수, 로그함수, 삼각함수 등의 함수에...
# 수평 점근선 수평 점근선(水平漸近線, Horizontal Asymptote)은 함수의 그래프가 독립변수(보통 $ x $)가 양의 무한대($ +\infty) 또는 음의 무한대($ -\infty $)로 갈 때, 특정한 수평선에 점점 가까워지는 경향을 보일 때 존재하는...
# Numerical Recipes ## 개 *Numerical*는 과학 및 공학 분야에서 수치해석 알고리즘을 실제 문제에 적용하기 위한 전문 서적 시리즈이자 소프트웨어 라이브러리의 총체를 의미한다. 1986년 최초로 출간된 이래로 물리학, 천문학, 공학, 생물정보...
# 수학적 표현 수학적 표현(Mathematical Expression)은 수학적 개념, 관계, 연산 등을 기호와 언어를 통해 명확하고 간결하게 전달하는 수단이다. 수학은 추상적인 사고를 기반으로 하기 때문에, 이를 효과적으로 기술하고 전달하기 위해서는 체계화된 표현...
# 중값 ## 개요 **중값**(median)은 통계학에서 자료의 중심 경향성을 나타내는 대표적인 척도 중 하나로, 주어진 데이터를 크순으로 정렬했을 때가운데에 위치하는 값**을 의미한다. 평균(mean)과 최빈값(mode)과 함께 중심경향성의 세 가지 주요 지표 ...
# 회귀 계수 ## 개요 회귀 계수는 통계학에서 변수 간 관계를 모델링하고 예측하는 데 사용되는 핵심 개념입니다. 주로 선형 회귀 분석을 통해 독립변수와 종속변수 사이의 수량적 관계를 정량화합니다. 이 문서에서는 회귀 계수의 정의, 종류, 계산 방법, 해석 방식 및 ...