검색 결과

"Geometry"에 대한 검색 결과 (총 14개)

피처 클래스

기술 > 데이터베이스 > 공간 데이터 구조 | 익명 | 2025-10-01 | 조회수 17

# 피처 클래스 ## 개요 **피처 클래스**(Feature Class)는 지리 정보 시스템(GIS, Geographic Information System)에서 공간를 저장하고 관리하는 기본 단위 중 하나로, 동일한 기하 유형(Geometry Type)과 속성 구조(Attribute Schema)를 가진 일련의 지리적 객체(피처)를 담는 데이터 구조입니...

평행이동

수학 > 기하학 > 합동 변환 | 익명 | 2025-09-28 | 조회수 20

# 평행이동 평행이동(平行移動, Translation)은 기하학에서 도형이나 점, 선분, 또는 전체 평면상의 객체를 **특정 방향으로 일정한 거리만큼 이동시키는 변환**을 말한다. 이 과정에서 도형의 크기, 모양, 방향은 그대로 유지되며, 오직 위치만 변화한다. 평행이동은 합동 변환(congruence transformation)의 한 종류로, 도형 간의...

회전

수학 > 기하학 > 합동 변환 | 익명 | 2025-09-28 | 조회수 20

# 회전 **회전**(rotation)은 기하학 도형이나 점을 평면 공간 내의 한 점(또는 축)을 중심으로 일정한 각도만큼 돌리는 **합동 변환**(congrence transformation)의 일종이다. 회전을 통해어진 도형 원래 도형과 크기와 모양이 동일하며, 이는 도형의 **합동성**(congruence)을 유지한다는 의미이다. 회전은 일상생활뿐 ...

변환 기하

수학 > 기하학 > 기하 변환 | 익명 | 2025-09-28 | 조회수 20

# 변환 기하 변환 기하(Transformational Geometry) 기하학적형이나 공간의 점들이 특정 규칙에 따라동하거나 변형되는 과정을 연구하는 기하학의 한 분야입니다. 이 분야는 도형의 위치, 방향, 크기 수학적으로 분석하고 표현하는 데 중점을 두며, 평면 기하학과 공간 기하학 모두에 적용됩니다. 변환 기하는 수학 교육뿐 아니라 컴퓨터 그래픽스,...

등각사상

수학 > 복소해석학 > 변환 | 익명 | 2025-09-20 | 조회수 28

# 등각사상 등각사상(Conformal Mapping)은 복소해석학에서 중요한 개념 중 하나로, 두 평면 영역 사이의 복소 함수 중에서 각도를 보존하는 특성을 가진 함수를 말한다. 이는 기하학적 변환의 일종으로, 특히 유체역학, 전기공학, 열전도 문제 등 다양한 응용 분야에서 널리 사용된다. 본 문서에서는 등각사상의 정의, 성질, 예시, 그리고 주요 응용...

3D 재구성

기술 > 영상 처리 > 3D 영상 기술 | 익명 | 2025-09-20 | 조회수 25

# 3D 재성 ## 개요 **3D 재구성**(3D Reconstruction)은 2차원(2D)상 또는 영상 시퀀스로부터 물체나 장면의 3차원 구조 복원하는 기술로, 컴퓨터 비전, 의료 영상, 로봇 공학, 증강 현실(AR), 가상 현실(VR), 자율주행 등 다양한 분야에서 핵심적인 역할을 수행한다. 이 기술은 단일 카메라, 스테레오 카메라, 또는 다중 뷰...

유클리드 기하

교육 > 수학 > 고전 기하학 | 익명 | 2025-09-19 | 조회수 24

# 유클리드 기 ## 개요 **유클리 기하**(Euclidean Geometry)는대 그리스의 수자 **유클리드Euclid, 기원전 300년)가 저술한 『원론』(*Elements*)에 체계적으로 정리된 기하학 체계를 말한다. 이는 평면과 공간에서 점, 선, 면, 각, 도형 등의 성질과 관계를 다루는 고전 기하학의 핵심 분야로, 오랜 기간 동안 수학 교육...

비유클리드 기하학

교육 > 수학 > 비유클리드 기하학 | 익명 | 2025-09-16 | 조회수 19

# 비유클리드 기학 ## 개요 비유클드 기하학(非Euclidean幾何學,-Euclidean Geometry)은 유클리 기하학의 평행선 공리를 따르지 않는 기하학 체계를 의미한다. 고전적인 유클리드 기하학 평면 위에서 직선과 각, 도형의 성질을 다루며, 특히 **"한 직선 밖의 한 점을 지나면서 그 직선과 평행한 직선은 오직 하나만 존재한다"** 는 제5...

델라나이 삼각분할

기술 > 데이터구조 > 공간 분할 | 익명 | 2025-09-13 | 조회수 26

# 델라나이 삼각분할 ## 개요 델라이 삼각분할(Delaunay Triangulation)은산 기하학 중요한 개념 중 하나로 주어진 평면상의 점 집합을 삼각형으로 분할하는 방법입니다. 이 분할 방식은 삼각형의 내부에 다른 점이 포함되지 않도록 하는 **델라나이 조건**(Delaunay Condition)을 만족시킵니다. 즉, 각 삼각형의 외접원(circ...

토폴로지

기술 > 데이터과학 > 공간 분석 | 익명 | 2025-09-09 | 조회수 24

# 토폴로지 ## 개요 **토폴로지**(Topology)는 수학의 한 분야로, 공간의 형상과 구조를 연속적인 변형(예: 늘이기, 구부리기 등) 하에서도 유지되는 성질을 연구하는 학문이다. 이러한 성질은 거리나 각도와 같은 정량적 요소보다는 점, 선, 면 간의 **위치 관계**와 **연결성**에 초점을 맞춘다. 데이터과학, 특히 **공간 분석**(Spat...

버퍼링

기술 > 소프트웨어 > 지리정보시스템 | 익명 | 2025-09-05 | 조회수 27

# 버퍼링 ## 개요 **버퍼링**(Buffer)은 지리시스템(GIS, Geographic Information System)에서 핵심적인 공간 분석 기법 중 하나로, 특정 지리적 객체(포인트, 라인, 폴리곤 등) 주변에 일정한 거리 내에 위치한 영역을 생성하는 과정을 의미한다. 이 기법은 도시 계획, 환경 보호, 재난 관리, 교통 분석 등 다양한 분야...

좌표기하

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 35

# 좌표기하 ## 개요 좌표기하는 수학의 기하학 분야에서 **직교좌표계**를 활용하여 도형을 대수적 방식으로 표현하고 분석하는 방법론이다. 이는 17세기에 르네 드카르트(René Descartes)가 고안한 해석기하(Analytic Geometry)의 핵심 개념으로, 기존의 순수 기하학과 대수학을 통합하여 수학적 문제를 해결하는 데 중요한 도구로 사용된다...

기하학

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 41

# 기하학 ## 개요 기하학(幾何學)은 수학의 한 분야로, 공간과 형태, 크기, 상호관계를 연구하는 학문이다. 고대부터 현대에 이르기까지 인간이 자연현상과 물리적 세계를 이해하기 위해 발전시킨 체계적인 지식으로, 공학, 물리학, 컴퓨터 과학 등 다양한 분야와 밀접한 연관을 가진다. 기하학은 도형의 성질을 탐구하는 동시에 수학적 추론과 논리를 활용해...

피타고라스 정리

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 37

# 피타고라스 정리 ## 개요 피타고라스 정리는 직각삼각형의 세 변 사이의 관계를 설명하는 기하학적 정리로, 수학 역사상 가장 유명한 공식 중 하나이다. 이는 "직각삼각형에서 빗변의 제곱은 다른 두 변의 제곱의 합과 같다"는 내용을 담고 있으며, 삼각법, 물리학, 공학 등 다양한 분야에 응용된다. 정리는 고대 그리스 수학자 피타고라스(Πυθαγόρας)에...