# 회귀 계수 회귀 계수(Regression Coefficient)는 회귀분석에서 독립변수(설명변수가 종속변(반응변수에 미치는 영향의 크기와 방을 나타내는 통계량이다. 회귀 계수는귀 모형의심 요소로, 데이터 기반으로 변수 간의 관계를 정량적으로 해석하고 예측하는 데 핵심적인 역할을 한다. 본 문서에서는 회귀 계수의 정의, 종류, 해석 방법, 추정 방식, ...
검색 결과
"회귀 계수"에 대한 검색 결과 (총 28개)
# 회귀 계수 ## 개요 회귀 계수는 통계학에서 변수 간 관계를 모델링하고 예측하는 데 사용되는 핵심 개념입니다. 주로 선형 회귀 분석을 통해 독립변수와 종속변수 사이의 수량적 관계를 정량화합니다. 이 문서에서는 회귀 계수의 정의, 종류, 계산 방법, 해석 방식 및 실제 적용 사례에 대해 상세히 설명합니다. --- ## 정의 및 개념 ### 선형 회...
# 등분산성 등분산성(等分散性, Homoscedasticity)은 통계학, 특히 회귀분석에서 매우 중요한 가정 중 하나로, 회귀 모형의 잔차(residuals)가 모든 독립변수 값에 대해 동일한 분산을 가진다는 성질을 의미합니다. 이 가정이 만족되지 않을 경우, 회귀 계수의 추정치는 여전히 불편(unbiased)할 수 있지만, 표준오차의 추정이 부정확해져...
# 다중 선형 회귀 다중 선형 회귀(Multiple Linear Regression)는 하나의 종속 변수(dependent variable)와 두 개 이상의 독립 변수(independent variables) 간의 선형 관계를 모델링하는 통계적 기법이다. 머신러닝과 통계학에서 널리 사용되며, 특히 수치 예측 문제(regression problems)에서 ...
# 로그 변환 ## 개요 로그 변환(log transformation)은 데이터 과학 및 통계 분석에서 자주 사용되는 **비선형 데이터 변환 기법**으로, 주로 **비대칭적이고 오른쪽으로 치우친**(right-skewed) 연속형 변수의 분포를 정규 분포에 가깝게 만들기 위해 활용된다. 특히 지수적 성장 패턴을 보이거나 값의 범위가 매우 넓은 데이터(예...
# 등분산성 ## 개요 **등분산**(homoscedasticity)은 통계학에서 회귀 분석 분산 분석(ANOVA), t-검정 등 여러 통계적 추론 방법의 핵심적인 **통계적 가정** 중 하나입니다. 이 가정은 모델의 오차 또는 잔차(residuals)의 분산이 독립 변수의 모든 수준이나 관측값에 관계없이 **일정하다**는 것을 의미합니다. 반대로, 분...
# 고차원 데이터 고차원 데이터(High-dimensional Data는 변수(특징)의가 관측치샘플)의 수보다 훨씬 많은 데이터를 의미합니다. 이러한는 현대 데이터 과학, 특히 생물정보학, 이미지 처리,어 처리, 금융 분석 등 다양한 분야에서 자주 등장하며, 분석의 복잡성과 도전 과제를 동반합니다. 본 문서에서는 고차원 데이터의 정의, 특성, 분석 시 발...
순서형 로스틱 회귀 ## 개요**순서형 로지스 회귀**(Ordinal Regression)는 종속(dependent variable)가 **서형 범주**(ordinal categorical)일 때 사용하는 통계적 회귀석 기법이다. 일반적인 로지스틱 회귀가 이진(binary) 또는 명목형(nominal) 범주형 변수를 예측하는 데 사용된다면, 순서형 로지스...
# 모델 해석성 ## 개요 **모델 해석성**(Model Interpretability)은 머신러닝 및 데이터과학 분야에서 모델이 예측을 내놓는 과정을 인간이 이해할 수 있도록 설명하는 능력을 의미합니다. 특히 복잡한 알고리즘(예: 딥러닝, 부스팅 모델 등)이 사용되는 경우, 모델의 결정 과정이 "블랙박스"처럼 보일 수 있어 해석성의 중요성이 더욱 부각...
# ACF ## 개요 ACF(Autorrelation Function, 자기관함수)는 시계열 분석에서 중요한 개념 중 하나로, **한 시계열 데이터 내에서 서로 다른 시점의 관측값 사이의 상관관계 측정하는 함수**입니다 시계열 데이터는 시간에 따라 순차적으로 수집된 데이터이므로, 현재과 과거의 사이에 일정한 관계가 존재할 수 있으며, 이러한 관계를 수치...
# 회귀 회귀(Regression)는 머신러닝 통계학에서 기법 중 하나로 하나 이상의 독립 변수(입력 변수)와 종속 변수(출력 변수) 사이의 관계를 모델링하여 연속 값을 예측하는 데 사용됩니다. 회귀 분석은 데이터의 패턴을 이해하고, 미래의 값을 추정하거나 간의 인과 관계를 탐색하는 데 널리 활용됩니다. 이 문서에서는 회귀 분석의 기본 개념, 주요 유형,...
# 회귀 분석## 개요 회귀 분석**( Analysis)은 통계학에서 두 이상의 변수 간의 관계를 모델링하고 분석하는 대표적인 기법이다 주로 하나의종속 변수**(응 변수, dependent variable와 하나 이상의독립 변수**(설 변수, independent variable 사이의 인과 관계 또는 상관 관를 수학적으로 표현하여, 독립 변수의 변화가 ...
# 실수 개요 실(實數, Real)는 수학 특히 해석학 통계학에서 가장초적이면서도 핵심적인 수 체계 중 하나이다 실수는 수선 위의 모든 점에 일대일응하는 수의합으로 정의되며,리수와 무리수를 모두 포함한다. 통학에서는 데이터의 측정값, 확률, 평균, 분산 등 대부분의 수치적가 실수로 표현되기 실수 체계의 이해는 통계적 분석의 기초가 된다. 실수는 자연...
# 정규방정식 ## 개요 정규방정식(Normal Equation)은 **선형회귀**(Linear Regression) 문제를 해결하기 위한 해석적(analytical) 방법 중 하나로, 최소제곱법(Least Squares Method)을 사용하여 선형 모델의 계수를 직접 계산하는 수식이다. 이 방정식은 손실 함수인 **잔차 제곱합**(Sum of Squ...
# 회귀 방정식 개요 **회귀 방식**(Regression Equation)은 통학에서 두 개 이상의 변수 간의 관계를 수학적으로 모델링하여, 한 변수의 값을 다른 변수의 값을 기으로 예측하는 사용되는 수식입니다. 주로 독립 변수(independent variable)와 종 변수(dependent variable) 사이의관 관계를 분석하고, 이를 바탕...
# 측정 오류 측정 오류(Measurement Error는 데이터 수집 과정에서 관측값이 실제 값과 일치 않는 경우 발생하는차를 의미합니다. 이는 실험, 조사, 관측 등 다양한 데이터 수집 방에서 불가피 나타날 수 있으며, 특히 데이터과학 및 통계 분석에서는의 신뢰성과 정확성에 큰향을 미칩니다. 측정 오류는 분석 결과의 왜곡, 추치의 편향, 모델의능 저하...
# 오차항 오차항(Error Term)은 통계학과귀 분석에서 매우 중요한 개념, 모델이 설명하지 못하는 데이터의 변동성을 나타냅. 이는 관된 종속 변수의 값과 회귀 모델이 예측한 값 사이의 차이를 의미하며, 모델의 정확도를 평가하고 개선하는 데 핵심적인 역할을 합니다. 오차항은 일반적으로 잔차(Residual)와 혼동되기도 하지만, 통계 이론에서는 모집단...
# 행렬-벡터 연산 행렬-벡터산은 선형대수의 핵심 개념 중 하나로, 데이터과학 머신러닝, 컴퓨터 그래픽스, 물리학 등 다양한 분야에서 광범위하게 활용됩니다. 특히 고차원 데이터를 처리하고 변환하는 데 있어 행렬과 벡터의 연산은 계산 효율성과 수학적 표현의 간결성을 제공합니다. 본 문서에서는 행렬-벡터 연산의 정의, 기본 연산 종류 계산 방법, 활용 사례 ...
# 리지 회귀 리지 회귀(Ridge Regression) 선형 회귀 분석의종이지만, **과적합**(overfitting)을 방지하기 위해 정규화(regularization) 기법을 적용한 고급 회귀 모델이다. 특히 독 변수들 사이에 **다중공선성**(multicollinearity)이 존재할 때 일반 선형 회귀보다 더 안정적인 계수 추정을 제공한다. 리지...
# 회귀 문제 ## 개요 **회귀 문제**(Regression Problem)는 머신러닝에서 지도 학습(Supervised Learning)의 대표적인 과제 중 하나로 입력 변수(특징)를 기반으로연속적인 수치형 출력값**(목표 변수)을 예측하는 작업을 의미한다. 예를 들어, 집의 면적, 위치, 방 수 등을 바탕으로 집값을 예측하거나, 과거의 기온 데이터...