검색 결과

"해의 존재성"에 대한 검색 결과 (총 7개)

행렬식

수학 > 선형대수학 > 행렬식 | 익명 | 2025-09-12 | 조회수 3

행렬식 행렬식**(式, Determinant)은 선형대수학에서 정방행렬(square matrix)에 대응되는 하나의 스칼라 값으로, 행렬의 여러 중요한 성질을 판별하는 데 핵심적인 역할을 한다. 행렬식은 행렬이 가역(invertible)인지 여부, 선형 방정식의 해의 존재성, 벡터 공간에서의 기하학적 해석(예: 부피 변화율) 등과 밀접한 관련이 있다. 이...

삼각 부등식

수학 > 선형대수학 > 노름 성질 | 익명 | 2025-09-11 | 조회수 3

# 삼각 부등식 ## 개요 **삼각 부등식**(Triangleequality)은 선대수학에서 벡 공간의 노름orm)이 만해야 하는 핵심 성질 중 하나로, 두 벡터의 합의 크기가 각 벡터의 크기의 합보다 작거나 같다는 원리를 수학적으로 표현한 것이다. 이 부등식은 기하학적 직관에서 유래되었으며, 삼각형에서 임의의 두 변의 길이의 합이 세 번째 변의 길이보...

# 피카르-린델뢰프 정리 ## 개요 피카르-린델뢰프리**(Picard–Lindelöf Theorem)는 상미분방정식(Ordinary Differential Equation, ODE)의 해가 존재하고 유일함을 보장하는 중요한 정리로, 초기값 문제의 해에 대한 존재성과 유일성에 관한 기본적인 결과를 제공한다. 이 정리는 19세기 말 프랑스의 수학자 **에밀...

경계값 문제

수학 > 미분방정식 > 경계 및 초기값 문제 | 익명 | 2025-09-07 | 조회수 7

# 경계값 문제 ## 개요 **경계값 문제**(Boundary Value Problem, BVP)는 미분방정식의 해를 구하는 과정에서, 특정 구간의 **경계**(boundary)에서 해가 만족해야 하는 조건을 제시하는 수적 문제이다. 이는 **초기값 문제**(Initial Value Problem, IVP)와 대비되는 개념으로, 초기값 문제는 독립변수의...

라플라스 방정식

수학 > 미적분학 > 타원형 방정식 | 익명 | 2025-09-07 | 조회수 5

# 라플라스 방정식 라플라스 방정식(Laplace's Equation)은 수학, 특히 편미분방정식과 수리물리학에서 매우 중요한할을 하는 타원형 편미분방정식의 대표적인 예입니다. 이 방정식은 정적인리적 현상, 즉 시간에 따라 변하지 않는 평형 상태를 기술하는 데 널리 사용되며, 전기학, 중력장, 유체역학, 열전도 등 다양한 분야에서 등장합니다. 라플라스 방...

상미분방정식

수학 > 미분방정식 > 상미분방정식 | 익명 | 2025-09-05 | 조회수 4

# 상미분방정식 ## 개요 상분방정식(微分方程式, Ordinary Differential Equation, ODE)은 하나의 독립 변수를 가진 함수와 함수의 도함수 사이의 관계를 나타내는 미분방정식입니다. 이는 물리학, 공학, 생물학, 경제학 등 다양한 과학 및 공학 분야에서 자연 현상이나 시스템의 동역학을 모델링하는 데 핵심적으로 사용됩니다. 상미분방...

선형 연립방정식

기술 > 수학 > 수치해석 | 익명 | 2025-09-03 | 조회수 8

# 선형 연립방식 선형 연립정식(Linear System of Equations은 여러 개의 선형 방정식이 동시에 성립해야 하는 조건을 만하는 해를 찾는 수학적 문제입니다. 수치해 분야에서 선형 연립방정식은 과학, 공학, 경제학 등 다양한 분야의 모델링 문제에서 핵심적인 역할을 하며, 실제 문제 해결을 위한 수치적 알고리즘 개발의 기초가 됩니다. 이 문서...