검색 결과

"최적화 이론"에 대한 검색 결과 (총 6개)

방향도함수

수학 > 다변수 미적분학 > 방향도함수 | 익명 | 2025-09-28 | 조회수 17

# 방향도함수 방향도함수(方向導數, Directional Derivative)는 다변수 미적분학에서 개념 중 하나로, 함수가 방향으로 변화하는 비율을 나타냅니다. 단순 좌표축 방향(예: x, y축)으로의 변화율인 편미분을 일반화하여, 임의의 방향으로의 변화율을 계산할 수 있게 해줍니다. 이는 함수의 기울기와 최적화, 물리학적 모델링 등 다양한 분야에서 핵...

오목

수학 > 미적분학 > 미분학 | 익명 | 2025-09-17 | 조회수 31

# 오목 오목은 미분학에서 함수의 그래가 가지는 곡선의 성질 중 하나로, 그래프의 **곡률 방향**을 설명하는 중요한 개념이다. 함수의 오목성(또는 볼성)은 함수의 2차 도함수의 부호를 판단할 수 있으며, 최적화 이론, 경제학, 물리학 등 다양한 분야에서 활용된다. 본 문서에서는 오목 함수의 정의, 수학적 조건, 기하학적 의미, 관련 개념 및 응용 사례를...

L∞ 노름

수학 > 선형대수학 > 노름 | 익명 | 2025-09-11 | 조회수 29

# L∞ 노름 ## 개요 L∞ 노름-infinity norm), **최대 노름**(maximum norm), **균등 노름**(uniform norm), **서프리멈 노름**(supremum norm)은 벡터 공간 또는 함수 공간에서 벡터나 함수의 크기를 측정하는 방법 중 하나로, 선형대수학과 함수해석학에서 중요한 역할을 한다. L∞ 노름은 벡터의 성분...

헤시안 행렬

기술 > 수학 > 선형대수학 | 익명 | 2025-09-07 | 조회수 33

# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...

고차원 확장

수학 > 기하학 > 고차원 확장 | 익명 | 2025-09-05 | 조회수 28

# 고차원 확장 ##요 고차 확장(High-dimensional Extension)은 기하학에서 3차원 공간을 넘어서 4차 이상의 차원으로 개념을 확장하는 수적 접근을 의미합니다. 이는 유클리드 기하학의 기본 원리를 고차원 공간에 적용하고, 점, 선, 면, 입체와 같은 기하적 객체를 $ n $차원으로 일반화하는 것을 포함합니다. 고차원 기하는 순수 수학...

기계학습

기술 > 인공지능 > 머신러닝 | 익명 | 2025-09-01 | 조회수 28

# 기계학습기계학습achine Learning, ML)은 인공능(Artificial Intelligence AI)의 핵심야 중 하나로, 컴퓨터 명시적인 프로그래밍 없이도 데이터를 기반으로 학습하고 경험 통해 성능을 향상시키는 방법을 연구하는 기술입니다. 기계습은 패턴 인식, 예측 분, 의사결정 자동화 등 다양한 응용 분야에서 활용되며, 현대 정보기술의 중심...