검색 결과

"차원"에 대한 검색 결과 (총 39개)

풀링

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-31 | 조회수 2

# 풀링 ## 개요 **풀링**(Pooling)은 **합성곱 신경망**(CNN, Convolutional Neural Network)에서 핵심적인 역할을 하는 연산 기법으로, 주로 **공간적 계층 구조**를 형성하고 **특징 추출**을 돕는다. 이 기법은 입력 데이터(예: 이미지)의 공간적 차원(높이, 너비)을 축소하여 계산 효율성을 높이면서도 중요한 정...

일급 함수

기술 > 프로그래밍 > JavaScript | 익명 | 2025-07-31 | 조회수 6

# JavaScript 일급 함수 ## 개요 JavaScript에서 **일급 함수**(First-class Function)는 함수가 프로그래밍 언어의 기본 자료형으로 취급되는 특성을 의미합니다. 이는 함수를 변수에 할당하거나, 다른 함수의 인자로 전달하거나, 함수에서 반환할 수 있는 기능을 포함합니다. 이러한 특성 덕분에 JavaScript는 함수형 프...

배열

기술 > 프로그래밍 > JavaScript | 익명 | 2025-07-31 | 조회수 5

# 배열 ## 개요 JavaScript의 **배열(Array)**은 여러 데이터를 순차적으로 저장하고 관리하는 데 사용되는 기본적인 자료구조입니다. 배열은 동적 크기, 다양한 내장 메서드, 유연한 데이터 처리 기능을 제공하며, 프로그래밍에서 반복 작업, 데이터 집합 처리, 상태 관리 등에 핵심적인 역할을 합니다. 이 문서에서는 배열의 기본 개념, 주요 메...

ResNet

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-30 | 조회수 2

# ResNet ## 개요 ResNet(Residual Network)는 2015년 Kaiming He 등이 발표한 딥러닝 아키텍처로, 깊은 신경망에서 발생하는 **Vanishing Gradient 문제**를 해결하기 위해 **잔차 학습(residual learning)** 프레임워크를 제안한 모델입니다. 이 모델은 ImageNet 대회(ILSVRC 20...

선형 연산

기술 > 데이터과학 > 분석 | 익명 | 2025-07-30 | 조회수 4

# 선형 연산 ## 개요 선형 연산(Linear Operation)은 데이터 과학과 분석 분야에서 핵심적인 수학적 도구로, 선형 대수학(Linear Algebra)의 기본 원리를 기반으로 합니다. 이 연산은 행렬, 벡터, 스칼라 등을 활용해 데이터의 구조를 변환하거나 패턴을 추출하는 데 사용되며, 머신러닝, 통계 분석, 최적화 문제 등 다양한 분야에 적용...

셀프-어텐션

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-30 | 조회수 7

# 셀프-어텐션 ## 개요 셀프-어텐션(Self-Attention)은 인공지능 분야에서 시퀀스 데이터의 상호작용을 모델링하는 데 사용되는 핵심적인 기술입니다. 특히 **트랜스포머(Transformer)** 아키텍처의 핵심 구성 요소로, 자연어 처리(NLP) 및 컴퓨터 비전(CV) 등 다양한 분야에서 혁신을 이끌었습니다. 이 메커니즘은 입력 시퀀스 내 모든...

비볼록 최적화

기술 > 데이터과학 > 분석 | 익명 | 2025-07-30 | 조회수 5

```markdown # 비볼록 최적화 ## 개요 비볼록 최적화(Non-convex Optimization)는 데이터과학과 기계학습에서 핵심적인 역할을 하는 수학적 최적화 문제입니다. 볼록 최적화 문제와 달리, 비볼록 문제는 여러 국소 최소값(Local Minima)과 안장점(Saddle Point)을 가질 수 있어 해법 도출이 복잡합니다. 특히 딥러닝,...

체인 규칙

기술 > 수학 > 미적분학 | 익명 | 2025-07-30 | 조회수 2

# 체인 규칙 ## 개요 체인 규칙(Chain Rule)은 미적분학에서 합성 함수의 도함수를 구하는 핵심적인 방법론입니다. 이 규칙은 외부 함수와 내부 함수의 변화율을 곱하여 전체 함수의 변화율을 계산하는 방식으로, 과학 및 공학 분야에서 복잡한 함수의 미분을 단순화하는 데 널리 사용됩니다. 예를 들어, $ f(g(x)) $ 형태의 함수에서 $ x $에 ...

유체역학

과학 > 물리학 > 유체역학 | 익명 | 2025-07-18 | 조회수 36

# 유체역학 ## 개요 유체역학(Fluid Mechanics)은 액체와 기체를 포함한 유체의 정적 및 동적 거동을 연구하는 물리학의 하위 분야이다. 이 분야는 유체가 외부 힘에 어떻게 반응하는지, 유동 패턴과 압력 분포를 이해하며, 공학, 자연과학, 의학 등 다양한 분야에서 핵심적인 역할을 한다. 유체역학은 고전 물리학의 기초 이론과 현대 기술 개...

완전 연결 층

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-17 | 조회수 8

# 완전 연결 층 ## 개요 완전 연결 층(Fully Connected Layer)은 인공지능(AI) 분야에서 신경망(Neural Network)의 핵심 구성 요소 중 하나로, 입력 데이터와 출력 데이터 간의 복잡한 관계를 모델링하는 데 사용됩니다. 이 층은 전층 연결 구조를 가지며, 모든 노드가 이전 계층의 모든 노드와 연결되어 있습니다. 일반적으로 신...

평균 풀링

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 20

# 평균 풀링 (Average Pooling) ## 개요/소개 평균 풀링(Average Pooling)은 딥러닝에서 네트워크의 공간적 차원을 축소하고, 계산 복잡도를 줄이기 위해 사용되는 기법이다. 특히 컨볼루션 신경망(Convolutional Neural Network, CNN)에서 입력 데이터(예: 이미지)의 특징을 추출한 후, 지역적인 정보를 평균화...

맥스 풀링

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 15

# 맥스 풀링 (Max Pooling) ## 개요/소개 맥스 풀링(Max Pooling)은 딥러닝에서 널리 사용되는 **공간적 차원 축소 기법**으로, 특히 **컨볼루션 신경망(Convolutional Neural Network, CNN)**에서 중요한 역할을 합니다. 이 기법은 입력 데이터의 공간 크기를 줄이면서 주요 특징(예: 엣지, 패턴)을 유지하는...

풀링 층

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-17 | 조회수 9

# 풀링 층 (Pooling Layer) ## 개요/소개 풀링 층(Pooling Layer)은 딥러닝에서 특히 **컨볼루션 신경망(Convolutional Neural Network, CNN)**에 사용되는 핵심 구성 요소로, 입력 데이터의 공간적 차원을 축소하여 계산 효율성을 높이고 모델의 일반화 능력을 향상시키는 역할을 합니다. 이 층은 특성 맵(Fe...

패딩

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 18

# 패딩 ## 개요 패딩(padding)은 데이터 분석 및 기계 학습에서 입력 데이터의 크기를 조정하거나 특정 처리 과정에 맞게 데이터를 확장하는 기법입니다. 주로 이미지 처리, 시계열 분석, 신경망 모델 구축 등 다양한 영역에서 활용되며, 데이터의 경계 정보 유지, 모델 성능 향상, 차원 일치 등을 목적으로 합니다. 패딩은 단순히 데이터를 확장하는 것이...

필터

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 16

# 필터 ## 개요 필터는 데이터 과학에서 중요한 역할을 하는 기술로, 원치 않는 정보를 제거하거나 특정 조건에 부합하는 데이터만 추출하는 과정을 의미합니다. 이는 데이터 정제, 특성 선택, 신호 처리 등 다양한 분야에서 활용되며, 분석의 정확도와 효율성을 높이는 데 기여합니다. 필터는 단순한 수학적 연산부터 복잡한 머신러닝 모델까지 다양한 형태로 구현됩...

컨볼루셔널 네트워크

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-17 | 조회수 15

# 컨볼루셔널 네트워크 ## 개요 컨볼루셔널 네트워크(Convolutional Neural Network, CNN)는 딥러닝의 주요 기술 중 하나로, 이미지 처리, 음성 인식, 자연어 처리 등 다양한 분야에서 활용됩니다. 이 네트워크는 **畳み込み(Convolutions)** 연산을 통해 입력 데이터의 특징을 자동으로 추출하고, **풀링(Pooli...

피타고라스 정리

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 7

# 피타고라스 정리 ## 개요 피타고라스 정리는 직각삼각형의 세 변 사이의 관계를 설명하는 기하학적 정리로, 수학 역사상 가장 유명한 공식 중 하나이다. 이는 "직각삼각형에서 빗변의 제곱은 다른 두 변의 제곱의 합과 같다"는 내용을 담고 있으며, 삼각법, 물리학, 공학 등 다양한 분야에 응용된다. 정리는 고대 그리스 수학자 피타고라스(Πυθαγόρας)에...

좌표기하

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 9

# 좌표기하 ## 개요 좌표기하는 수학의 기하학 분야에서 **직교좌표계**를 활용하여 도형을 대수적 방식으로 표현하고 분석하는 방법론이다. 이는 17세기에 르네 드카르트(René Descartes)가 고안한 해석기하(Analytic Geometry)의 핵심 개념으로, 기존의 순수 기하학과 대수학을 통합하여 수학적 문제를 해결하는 데 중요한 도구로 사용된다...