# 잔차 제곱합 ## 개요 잔차 제곱합(Sum of Squared Residuals, SSR)은 **회귀 분석**에서 모델의 예측값과 실제 관측값 간의 차이를 정량적으로 평가하는 지표입니다. 이 값은 잔차(residual)를 제곱한 후 모든 관측치에 대해 합산한 것으로, 모델의 적합도를 판단하는 핵심 요소입니다. 잔차 제곱합이 작을수록 모델이 데이터에 잘...
검색 결과
"제곱합"에 대한 검색 결과 (총 20개)
# 드롭아웃 ## 개요 드롭아웃(Dropout)은 신경망 학습 과정에서 과적합(Overfitting)을 방지하기 위해 제안된 정규화(Regularization) 기법이다. 이 방법은 2012년 Hinton과 동료들이 발표한 논문에서 처음 소개되었으며, 신경망의 일부 뉴런을 무작위로 제거하면서 학습을 진행하는 방식으로 네트워크의 일반화 성능을 향상시킨다. ...
# 미세조정 ## 개요 **미세조정**(Fine-tuning)은 사전 훈련된 머신러닝 모델을 특정 작업이나 도메인에 맞게 세부적으로 조정하는 기법입니다. 일반적으로 대규모 데이터셋으로 훈련된 모델(예: ImageNet, BERT)을 기반으로 하여, 새로운 작업에 필요한 작은 데이터셋으로 추가 훈련을 진행합니다. 이는 **전이 학습**(Transfer Le...
# L2 정규화 ## 개요 L2 정규화(Ridge Regularization)는 머신러닝 모델의 **과적합**(Overfitting)을 방지하기 위해 사용되는 기법입니다. 이는 손실 함수(Loss Function)에 **가중치의 제곱합**을 패널티 항으로 추가하여 모델 복잡도를 제어하는 방식으로 작동합니다. 특히 데이터가 적거나 특성(Feature) 수가...
Okay, I to write a professional wiki-style document in Korean about the Ordinary Least Squares (OLS) method under the category of Regression in Statistics. Let me start by outlining the structure base...
# 최소 제곱법 ## 개요 최소 제곱법(Least Squares Method)은 통계학에서 관측된 데이터에 가장 적합한 모델을 찾기 위해 널리 사용되는 수학적 최적화 기법이다. 이 방법은 관측값과 모델 예측값의 차이(잔차)의 제곱합을 최소화하여 최적의 파라미터를 추정한다. 특히 회귀분석에서 선형 및 비선형 모델의 파라미터 추정에 핵심적인 역할을 하며, 단...
# 방정식 ## 개요 방정식은 수학에서 두 표현식이 같음을 나타내는 수식으로, 통계학에서는 데이터의 패턴을 모델링하고 예측하는 데 핵심적인 역할을 합니다. 통계적 방정식은 변수 간의 관계를 정량화하고, 불확실성을 고려한 추론을 가능하게 하며, 다양한 분석 기법의 기반을 형성합니다. 예를 들어, 회귀 분석을 통해 변수 간의 선형 관계를 모델링하거나, 가설 ...
# 선형 최소 제곱법 ## 개요 선형 최소 제곱법(Linear Least Squares)은 통계학과 수학에서 회귀분석의 핵심 기법 중 하나로, 관측된 데이터에 가장 잘 맞는 선형 모델을 추정하기 위해 사용됩니다. 이 방법은 **잔차의 제곱합을 최소화**하여 최적의 회귀 계수를 도출하며, 단순 회귀와 다중 회귀 분석 모두에 적용 가능합니다. 특히, 데이터의...
# p-값 ## 개요 **p-값**(p-value)은 통계적 가설 검정에서 귀무 가설(null hypothesis)이 참일 경우, 관측된 데이터 또는 그보다 더 극단적인 결과가 발생할 확률을 나타냅니다. 이 값은 연구자가 귀무 가설을 기각할지 여부를 판단하는 기준으로 사용되며, 일반적으로 0.05 또는 0.01과 같은 유의 수준(significance l...
# 맥스 풀링 (Max Pooling) ## 개요/소개 맥스 풀링(Max Pooling)은 딥러닝에서 널리 사용되는 **공간적 차원 축소 기법**으로, 특히 **컨볼루션 신경망(Convolutional Neural Network, CNN)**에서 중요한 역할을 합니다. 이 기법은 입력 데이터의 공간 크기를 줄이면서 주요 특징(예: 엣지, 패턴)을 유지하는...
# 풀링 층 (Pooling Layer) ## 개요/소개 풀링 층(Pooling Layer)은 딥러닝에서 특히 **컨볼루션 신경망(Convolutional Neural Network, CNN)**에 사용되는 핵심 구성 요소로, 입력 데이터의 공간적 차원을 축소하여 계산 효율성을 높이고 모델의 일반화 능력을 향상시키는 역할을 합니다. 이 층은 특성 맵(Fe...
# L1 정규화 ## 개요/소개 L1 정규화(L1 Regularization)는 머신러닝 모델의 과적합(overfitting)을 방지하기 위해 사용되는 중요한 기법 중 하나입니다. 이 방법은 모델의 파라미터(계수)에 절대값을 기반으로 페널티를 추가하여, 불필요한 특성(feature)을 제거하고 모델의 단순성을 유지합니다. L1 정규화는 특히 **스파시...
# K-평균 ## 개요 K-평균(K-Means)은 데이터를 **군집화(Clustering)**하는 대표적인 비지도학습(unsupervised learning) 알고리즘입니다. 주어진 데이터 포인트를 사전에 정의된 **K개의 군집**으로 분류하여, 각 군집 내 데이터 간 유사도를 최대화하고, 다른 군집과의 차이를 최소화하는 방식으로 작동합니다. 이 ...
# R-squared ## 개요 R-squared(결정계수)는 회귀분석에서 모델의 설명력(예측 능력)을 측정하는 주요 통계량이다. 이 값은 종속변수의 변동성 중 독립변수가 설명할 수 있는 비율을 나타내며, 0~1 사이의 값을 가진다. R-squared는 회귀모델의 적합도를 평가하는 데 널리 사용되지만, 단순히 모델의 성능만을 판단하는 지표로 활용될 수 있...
# 결정 계수 (R-squared) ## 개요 결정 계수(R-squared)는 통계학에서 회귀 모델의 설명력(예측 능력)을 측정하는 주요 지표로, 종속 변수의 변동성 중 독립 변수에 의해 설명되는 비율을 나타냅니다. 0~1 사이의 값을 가지며, 값이 클수록 모델이 데이터를 더 잘 설명한다고 해석됩니다. 결정 계수는 회귀 분석에서 모델 적합도 평가에 널리 ...
# 분류 (Classification) ## 개요 분류(Classification)는 데이터과학에서 가장 핵심적인 기계학습(ML) 기법 중 하나로, 주어진 데이터를 사전 정의된 범주 또는 클래스에 할당하는 과정을 의미합니다. 이는 **지도학습(Supervised Learning)**의 대표적 유형으로, 입력 데이터(X)와 그에 해당하는 레이블(Y)을 기반...
# 클러스터링 ## 개요 클러스터링(Clustering)은 데이터 포인트를 유사성에 따라 그룹화하는 **비지도 학습(unsupervised learning)** 기법으로, 데이터의 내재적 구조를 탐색하고 패턴을 발견하는 데 활용됩니다. 이는 분석가들이 대규모 데이터 세트에서 의미 있는 정보를 추출할 수 있도록 도와주며, 마케팅, 생물정보학, 이미지...
# 회귀 계수 ## 개요 회귀 계수는 통계학에서 변수 간 관계를 모델링하고 예측하는 데 사용되는 핵심 개념입니다. 주로 선형 회귀 분석을 통해 독립변수와 종속변수 사이의 수량적 관계를 정량화합니다. 이 문서에서는 회귀 계수의 정의, 종류, 계산 방법, 해석 방식 및 실제 적용 사례에 대해 상세히 설명합니다. --- ## 정의 및 개념 ### 선형 회...
# 회귀 방정식 ## 개요 회귀 방정식은 통계학에서 두 변수 간의 관계를 모델링하고 예측하는 데 사용되는 수학적 표현이다. 주로 독립변수(예: X)와 종속변수(예: Y) 사이의 상관관계를 분석하며, 이는 데이터의 패턴을 이해하고 미래 값을 추정하는 데 중요한 도구로 활용된다. 회귀분석은 다양한 분야에서 적용되며, 선형회귀, 로지스틱회귀, 다항회귀 ...
# 단순 회귀 ## 개요 단순 회귀(Simple Regression)는 하나의 독립 변수(X)와 종속 변수(Y) 간의 선형 관계를 모델링하는 통계적 방법이다. 이 기법은 데이터 간의 상관관계를 분석하고, 미래 값을 예측하거나 변수 간의 영향을 설명하는 데 널리 사용된다. 단순 회귀는 다중 회귀(Multiple Regression)와 달리 단일 독립 변수만...