슈뢰딩거 방식 ## 개요 **뢰딩거 방정식**(Södinger Equation은 양자역학 핵심을 이루는 기본 방정식으로, 미시 세계에서 입자의 운동과 상태를 기술하는 데 사용된다. 이 방정식은 1926년 오스트리아의 물리학자 **에르빈 슈뢰딩**(Erwin Schröinger)에 의해안되었으며, 고전역학에서 뉴턴의 운동 법칙이 가지는 역할과 유사하게, ...
검색 결과
"슈뢰딩거 방정식"에 대한 검색 결과 (총 8개)
# 편미분방정식 ## 개요 **편미분방정식**(Partial Differential Equation, 이하 PDE)은 두 개 이상의 독립 변수를 가지는 함수와 그 함수의 **편미분**(partial derivative) 사이의 관계를 나타내는 방정식입니다. 일반 미분방정식(ODE)이 하나의 독립 변수(예: 시간)에 대한 함수의 변화율을 다룬다면, 편미분...
# 라게르 다항식 라게르 다항식(Laguerre polynomials)은 수학, 특히 직교 다항식 이론에서 중요한 위치를 차지하는 다항식 계열이다. 이 다항식들은 양자역학, 수치해석, 확률론 등 다양한 분야에서 응용되며, 특히 수소 원자 모형의 파동함수 해석에 핵심적인 역할을 한다. 본 문서에서는 라게르 다항식의 정의, 성질, 생성 방법, 직교성, 그리고...
파동 방정식 ## 개요 **파동 방정식**(Wave Equation)은리학과 공학에서 파동 현상, 즉 진동이나 에너지 공간을 따라 전파되는정을 수학적으로 기술하는 **편미분방정식**(DE)의 대표적인 예이다. 이 방정식은 음파, 전자기파, 수면파, 지진파 등 다양한 자연 현상의 모델링에 사용되며, 고전역학, 전자기학, 양자역학 등 여러 분야에서 핵심적인...
# 크랭크-니콜슨 방법 크랭크-니슨(Crank-Nicolson)은 시간에 의하는 편미분방식(PDE), 특히산 방정식usion equation)과 열전달 방정식(heat equation 등을 수치적으로석하는 데 널리 사용되는 유한차분법(Finite Difference Method, FDM 중 하나이다. 방법은 **암시적 방법**(implicit method...
# 스펙트럴 방법## 개요 스펙트럴 방법(Spectral Method) 편미분방정(PDE, Partial Differential Equation)의 수치적 해를 구 데 사용되는 고급 수치 해석 기법 중 하나로, 주로 주기적 또는 매끄러운 해를 갖는 문제에 적합하다. 이 방법은 유한 차분법(Finite Difference Method)이나 유한 요소법(Fi...
# 편미분방정식 ## 개요 편미분방정식(偏微分方程式, Partial Differential Equation, 이하 PDE)은 개 이상의 독립 변수를 가지는 함수와 그 함수의 **편미분**(partial derivative)들 사이의 관계를 나타내는 방정식이다. 이는 물리학, 공학, 경제학, 생물학 등 다양한 분야에서 자연 현상을 수학적으로 모델링하는 데...
과학 계산 ## 개요 **과학 계산**(Scientific Computing)은 수학, 물리, 공학,물학 등 다양한 과 분야의 문제를 해결하기 위해 컴퓨터를 활용하는 학문 분야. 이는 복한 수학적 모을 수치적으로 해석하고, 실제 현상을 시뮬레이션하거나 예측하는 데 중심적인 역할을 한다. 과학 계산은 이론적 분석과 실험적 관찰에 더해 **제3의 과학 방법...