Okay, I to write a professional Wikipedia document about Lasso Regression based on the given structure and requirements. Let's start by understanding the classification and keywords. The main category...
검색 결과
"다중공선성"에 대한 검색 결과 (총 6개)
# L2 정규화 ## 개요 L2 정규화(Ridge Regularization)는 머신러닝 모델의 **과적합**(Overfitting)을 방지하기 위해 사용되는 기법입니다. 이는 손실 함수(Loss Function)에 **가중치의 제곱합**을 패널티 항으로 추가하여 모델 복잡도를 제어하는 방식으로 작동합니다. 특히 데이터가 적거나 특성(Feature) 수가...
Okay, I to write a professional wiki-style document in Korean about the Ordinary Least Squares (OLS) method under the category of Regression in Statistics. Let me start by outlining the structure base...
# 최소 제곱법 ## 개요 최소 제곱법(Least Squares Method)은 통계학에서 관측된 데이터에 가장 적합한 모델을 찾기 위해 널리 사용되는 수학적 최적화 기법이다. 이 방법은 관측값과 모델 예측값의 차이(잔차)의 제곱합을 최소화하여 최적의 파라미터를 추정한다. 특히 회귀분석에서 선형 및 비선형 모델의 파라미터 추정에 핵심적인 역할을 하며, 단...
# 로짓(Logit) ## 개요 로짓(logit)은 통계학과 데이터 과학에서 중요한 개념으로, 확률(probability)을 **로그-오즈(log-odds)** 형태로 변환하는 함수입니다. 이는 주로 **로지스틱 회귀**(logistic regression)와 같은 분류 모델에서 사용되며, 이진 결과(예: 성공/실패, 승리/패배)를 예측할 때 유용합니다....
# 선형 회귀 ## 개요 선형 회귀(Linear Regression)는 통계학과 데이터 과학에서 널리 사용되는 기초적인 예측 모델링 기법이다. 이 방법은 독립 변수(X)와 종속 변수(Y) 간의 선형 관계를 수학적 방정식으로 표현하여, 미래 값을 예측하거나 변수 간의 영향을 분석하는 데 활용된다. 선형 회귀는 단순 회귀(Simple Linear Regres...