Okay, I to write a professional Korean Wikipedia-style document about "매개변수 (parameters) under the of machine learning. Let me start understanding the requirements. The wants a markdown document with ...
검색 결과
"기울기"에 대한 검색 결과 (총 29개)
# ResNet ## 개요 ResNet(Residual Network)는 2015년 Kaiming He 등이 발표한 딥러닝 아키텍처로, 깊은 신경망에서 발생하는 **Vanishing Gradient 문제**를 해결하기 위해 **잔차 학습(residual learning)** 프레임워크를 제안한 모델입니다. 이 모델은 ImageNet 대회(ILSVRC 20...
```markdown # 비볼록 최적화 ## 개요 비볼록 최적화(Non-convex Optimization)는 데이터과학과 기계학습에서 핵심적인 역할을 하는 수학적 최적화 문제입니다. 볼록 최적화 문제와 달리, 비볼록 문제는 여러 국소 최소값(Local Minima)과 안장점(Saddle Point)을 가질 수 있어 해법 도출이 복잡합니다. 특히 딥러닝,...
# 점근선 ## 개요 점근선(Asymptote)은 수학, 특히 미적분학에서 함수의 그래프가 무한대로 발산할 때 가까워지는 직선을 의미합니다. 이는 함수의 전반적인 행동을 이해하고 그래프를 정확하게 그리는 데 중요한 역할을 합니다. 점근선은 크게 **수직 점근선**, **수평 점근선**, **기울기 점근선**으로 구분되며, 각각의 조건과 활용 방법은 서로 ...
# 목적 함수 ## 개요 목적 함수(objective function)는 데이터과학과 최적화 문제에서 핵심적인 역할을 하는 수학적 함수로, 모델의 성능을 평가하거나 최적의 해를 도출하기 위해 최소화 또는 최대화하는 대상입니다. 기계학습에서는 모델의 예측 오차를 줄이는 것을 목표로 하며, 수학적 최적화에서는 특정 조건 하에서 최적의 해를 찾는 데 사용됩니다...
# 최소 제곱법 ## 개요 최소 제곱법(Least Squares Method)은 통계학에서 관측된 데이터에 가장 적합한 모델을 찾기 위해 널리 사용되는 수학적 최적화 기법이다. 이 방법은 관측값과 모델 예측값의 차이(잔차)의 제곱합을 최소화하여 최적의 파라미터를 추정한다. 특히 회귀분석에서 선형 및 비선형 모델의 파라미터 추정에 핵심적인 역할을 하며, 단...
# 방정식 ## 개요 방정식은 수학에서 두 표현식이 같음을 나타내는 수식으로, 통계학에서는 데이터의 패턴을 모델링하고 예측하는 데 핵심적인 역할을 합니다. 통계적 방정식은 변수 간의 관계를 정량화하고, 불확실성을 고려한 추론을 가능하게 하며, 다양한 분석 기법의 기반을 형성합니다. 예를 들어, 회귀 분석을 통해 변수 간의 선형 관계를 모델링하거나, 가설 ...
# 백프로파게이션 (Backpropagation) ## 개요 백프로파게이션(Backpropagation)은 인공 신경망(Artificial Neural Network, ANN)을 학습시키는 데 사용되는 주요 알고리즘 중 하나입니다. 이 기법은 **오차 역전파**라고도 불리며, 네트워크의 출력과 실제 타겟 값 사이의 오차를 최소화하기 위해 가중치와 편향을 ...
# 컨볼루셔널 네트워크 (CNN) ## 개요 컨볼루셔널 네트워크(Convoluted Neural Network, CNN)는 인공지능(AI) 분야에서 이미지 처리 및 시각적 데이터 분석에 특화된 딥러닝 기법입니다. 1980년대 후반부터 발전해온 이 기술은 컴퓨터 비전의 혁신을 주도하며, 객체 탐지, 이미지 분류, 패턴 인식 등 다양한 응용 분야에서 핵심 역...
# LSTM ## 개요 LSTM(Long Short-Term Memory)는 시계열 데이터 처리에 특화된 인공지능 기술로, **기존 순환 신경망(RNN)**의 한계를 극복하기 위해 1997년 Hochreiter & Schmidhuber에 의해 제안되었습니다. RNN은 단기 기억을 유지하지만 장기 의존성을 처리하는 데 어려움이 있었고, 이로 인해 **기울기...
# 연쇄법칙 (Chain Rule) ## 개요/소개 연쇄법칙(Chain Rule)은 미적분학에서 복합함수(composite function)의 도함수를 계산하는 기본적인 규칙이다. 두 함수 $ f(x) $와 $ g(x) $가 주어졌을 때, $ h(x) = f(g(x)) $로 정의된 복합함수의 도함수는 $ h'(x) = f'(g(x)) \cdot g'(x)...
# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나입니다. 특정 점에서의 순간적인 변화율이나 기울기를 계산하는 데 사용되며, 물리학, 공학, 경제학 등 다양한 분야에서 응용됩니다. 도함수를 통해 함수의 최대/최소값, 곡선의 기울기, 가속도 등을 분석할 수 있습니다. --- ##...
# 도함수 ## 개요 도함수(derivative)는 수학에서 함수의 변화율을 나타내는 개념으로, 미적분학의 핵심 주제 중 하나이다. 특정 점에서의 순간적인 변화율이나 곡선의 접선 기울기를 계산하는 데 사용된다. 도함수는 물리학, 공학, 경제학 등 다양한 분야에서 응용되어 중요한 역할을 한다. ## 정의와 수학적 표현 ### 극한을 통한 정의 도함수는 함...
# 피타고라스 정리 ## 개요 피타고라스 정리는 직각삼각형의 세 변 사이의 관계를 설명하는 기하학적 정리로, 수학 역사상 가장 유명한 공식 중 하나이다. 이는 "직각삼각형에서 빗변의 제곱은 다른 두 변의 제곱의 합과 같다"는 내용을 담고 있으며, 삼각법, 물리학, 공학 등 다양한 분야에 응용된다. 정리는 고대 그리스 수학자 피타고라스(Πυθαγόρας)에...
# 좌표기하 ## 개요 좌표기하는 수학의 기하학 분야에서 **직교좌표계**를 활용하여 도형을 대수적 방식으로 표현하고 분석하는 방법론이다. 이는 17세기에 르네 드카르트(René Descartes)가 고안한 해석기하(Analytic Geometry)의 핵심 개념으로, 기존의 순수 기하학과 대수학을 통합하여 수학적 문제를 해결하는 데 중요한 도구로 사용된다...
# 함수 ## 개요 함수는 수학에서 중요한 개념으로, 하나의 입력 값에 대해 단일 출력 값을 매핑하는 규칙을 의미합니다. 이는 다양한 분야에서 모델링과 예측을 가능하게 하며, 대수학, 미적분학, 과학 등에서 핵심적인 역할을 합니다. 본 문서에서는 함수의 정의, 종류, 성질, 실생활 적용 등을 상세히 설명합니다. --- ## 정의 함수는 **도메인**(...
# 미적분학 ## 개요 미적분학(calculus)은 수학의 중요한 분야로, 변화와 누적을 연구하는 학문이다. 17세기에 뉴턴(Isaac Newton)과 라이프니츠(Gottfried Wilhelm Leibniz)에 의해 체계화된 이 분야는 물리학, 공학, 경제학 등 다양한 과학 분야에서 필수적인 도구로 사용된다. 미적분학은 **미분**과 **적분** 두 가...
# 에너지 공급 ## 개요 에너지 공급은 생물체가 생명 활동을 유지하기 위해 필요한 화학적 에너지를 생성하고 조절하는 과정을 의미합니다. 이는 세포 수준에서의 대사 반응과 신체 전체의 호르몬 및 신경 시스템 간 상호작용을 포함하며, 주로 **아데노신 삼인산**(ATP)이라는 에너지 분자로 저장되고 사용됩니다. 생리학적 관점에서 에너지 공급은 식이 ...
# 활성화 함수 ## 개요/소개 활성화 함수는 인공신경망(ANN)에서 입력 신호를 처리하여 출력을 생성하는 데 사용되는 핵심 요소입니다. 이 함수는 신경망이 비선형 관계를 학습할 수 있도록 하며, 단순한 선형 모델로는 해결 불가능한 복잡한 문제(예: 이미지 인식, 자연어 처리)를 해결하는 데 기여합니다. 활성화 함수의 선택은 네트워크 성능, 수렴 속도...