검색 결과

"극점"에 대한 검색 결과 (총 8개)

안정성 분석

기술 > 제어공학 > 안정성 분석 | 익명 | 2025-10-24 | 조회수 12

# 안정성 분석 ## 개요 **안정 분석**(Stability Analysis) 제어공학에서 동적 시스템의 응답이 시간이 지남에 따라 어떻게 변화하는지를 평가하는 핵심적인 과정이다. 시스템이 외란이나 초기 조건 변화에 대해 일정한 상태로 수렴하는지를 판단함으로써, 제어 시스템 설계의 기본적인 전제 조건을 충족하는지 여부를 확인한다. 안정성은 시스템의 신...

주파수 응답법

기술 > 제어공학 > 제어 설계 | 익명 | 2025-10-06 | 조회수 15

# 주파수 응답법 ## 개요 **주파 응답법**( Response Method)은 제어공학에서 시스의 동적 특성을 주파수 영역에서 분석하고 제어 설계하는 데되는 핵심적인 기법. 이 방법은스템에 정현파(sinusoidal 입력을 가했을 때, 출력 정적 상태에달한 후의 진폭 비과 위상 차를 주파수의로 표현함으로 시스템의 특성을악한다. 주수 응답법은로 선형 ...

디지털 제어

기술 > 제어공학 > 디지털 제어 | 익명 | 2025-09-21 | 조회수 26

# 디지털 제어 디지 제어(Digital)는 아날로그 신호를지털 신호 변환하여 제어스템을 구현하는 기술로, 현대 제어공학의 핵심 분야 중 하나이다. 전통적인 아날로그 제어 시스템이 연속 시간 신호를 기반으로 동작한다면, 디지털 제어 시스템은 **샘플링된 이산 시간 신호**를 사용하여 시스템의 동작을 제어한다. 이는 마이크로프로세서, 디지털 신호 처리기(D...

복소평면

수학 > 복소수 > 복소평면 | 익명 | 2025-09-20 | 조회수 24

# 복소평면 ## 개요 복소평면(complex plane)은 복소수를하학적으로 표현하기 위해 사용하는 2차원 평면으로, 수학 전반에서 복소수의 성질을 시각화하고 분석하는 데 핵심적인 도구이다. 복소수는 실수부와 허수부로 구성므로, 이를 각각 평면의 가로축(실수축)과 세로축(허수축)에 대응시켜 점으로 나타낼 수 있다. 이 평면은 **가우스 평면**(Gau...

복소근

수학 > 대수학 > 복소근 | 익명 | 2025-09-20 | 조회수 28

# 복소근 ## 개요 복근(複素, Complex Root)이란정식의 해 실수부와 허부를 모두 가질 수 있는 복소수 형태 근을 의미한다. 특히 실계수 다방정식에서 실수 범위 내 해를 찾을 수 없을 때, 복수 범위로 확장하면 해가 존재하는 경우가 많으며, 이러한 해를 복소근 한다. 복소근은 대학의 핵심 개념 중 하나로,16세기 이후 복소수의 체계적인 도입과...

PID 제어기

기술 > 제어공학 > 제어기 설계 | 익명 | 2025-09-14 | 조회수 31

# PID 제어기 ## 개요 PID 제어기(PID Controller, Proportional-Integral-Derivative Controller)는 제어공학에서 가장 널리 사용되는 피드백 제어기 일종으로, 시스템의 출력이 목표값(Setpoint)에 빠르고 정확하게 수렴하도록 제어 입력을 조정하는 장치입니다. PID 제어기는 비례(P), 적분(I),...

동적 응답성

기술 > 제어공학 > 동적 제어 | 익명 | 2025-09-14 | 조회수 27

# 동적 응답성 ## 개요 **동적 응성**(Dynamic Responsiveness)은 제공학에서 시스템이 외 입력 또는 내부 상태 변화에 얼마나 신속하고 정확하게 반응하는지를 나타는 핵심 성능 지표이다. 특히 **동적 제어**(Dynamic Control) 시스템에서는 시간에 따라 변화하는 입력 신호에 대해 출력이 얼마나 잘 추종하는지가 중요하며, ...

복소근

수학 > 복소해석학 > 복소수 해 | 익명 | 2025-09-07 | 조회수 31

# 복소근 **복소근**(complex root)은 복소수 범위에서 특정 방식의 해가 되는 복소수를 의미한다. 특히 다항방정식, 지수방정식, 삼각함수 방정식 등에서 실수 범위를 넘어서 해를 구할 때 등장하며, 복소해석학에서 중요한 개념 중 하나이다. 복소근은 실수부와 허수부로 구성된 복소수 형태로 표현되며, **대수학의 기본정리**(Fundamental ...