# p-값 ## 개요 **p-값**(p-value, probability value)은 통계학에서 **가설검정**(hypothesis testing)의 핵심 개념 중 하나로, 귀무가설(null hypothesis)이 사실일 때 관측된 표본 데이터 또는 그보다 더 극단적인 결과가 나타날 확률을 의미한다. p-값은 데이터의 통계적 유의성을 판단하는 데 사용...
검색 결과
"가설검정"에 대한 검색 결과 (총 5개)
# 유의 수준 ## 개요 **유의 수준**(Significance Level)은 통계학에서 가설검정(hypothesis testing)의 기준이 되는 임계값으로, 귀무가설(Null Hypothesis)이 참일 때에도 이를 기각할 수 있는 허용 오차를 의미한다. 일반적으로 그리스 문자 α(alpha)로 표기되며, 주로 0.05(5%), 0.01(1%), ...
# 유의수준 ## 개요 **유의수준**(significance level)은 통계학에서 **가설검정**(hypothesis testing)을 수행할 때 사용하는 기준값으로, 귀무가설($H_0$)이 참일 경우에도 이를 기각할 수 있는 허용 가능한 오류의 확률을 의미한다. 일반적으로 그리스 문자 알파(α)로 표기되며, 주로 **0.05**, **0.01**...
# 등분산성 등분산성(等分散性, Homoscedasticity)은 통계학, 특히 회귀분석에서 매우 중요한 가정 중 하나로, 회귀 모형의 잔차(residuals)가 모든 독립변수 값에 대해 동일한 분산을 가진다는 성질을 의미합니다. 이 가정이 만족되지 않을 경우, 회귀 계수의 추정치는 여전히 불편(unbiased)할 수 있지만, 표준오차의 추정이 부정확해져...
# 수학적 표현 수학적 표현(Mathematical Expression)은 수학적 개념, 관계, 연산 등을 기호와 언어를 통해 명확하고 간결하게 전달하는 수단이다. 수학은 추상적인 사고를 기반으로 하기 때문에, 이를 효과적으로 기술하고 전달하기 위해서는 체계화된 표현 방식이 필수적이다. 수학적 표현은 단순한 기호 나열을 넘어서 논리적 구조와 의미를 내포하...