# 다변수 체인 규칙 다변수 체인 규칙(Multivariable Chain Rule)은 다변수 미적분학에서 중요한 도구 중 하나로, **여러 변수에 의존하는 함수의 합성 함수를 미분할 때 사용되는 법칙입니다. 이 규칙은 단일 변수 함수의 체인 규칙을 다변수 함수로 확장한 것으로, 물리학, 공학, 경제학 등 다양한 분야에서 함수의 변화율을 분석할 때 핵심적...
검색 결과
"수학"에 대한 검색 결과 (총 269개)
# 라플라스 방정식 라플라스 방정식(Laplace's Equation)은 수학, 특히 편미분방정식과 수리물리학에서 매우 중요한할을 하는 타원형 편미분방정식의 대표적인 예입니다. 이 방정식은 정적인리적 현상, 즉 시간에 따라 변하지 않는 평형 상태를 기술하는 데 널리 사용되며, 전기학, 중력장, 유체역학, 열전도 등 다양한 분야에서 등장합니다. 라플라스 방...
# 헤시안 행렬 헤시안 행렬(Hessian Matrix)은 다변수 실수값 함수의 **이계도함수**(second-order partial derivatives)를 정사각형 행렬 형태로 배열한 것으로, 함수의 국소적 곡률 정보를 제공하는 중요한 수학적 도구입니다. 선형대수학과 최적화 이론, 머신러닝, 물리학 등 다양한 분야에서 널리 사용되며, 특히 함수의 극...
# 루프 벡터화 ## 개요 **루프 벡터화**(Loop Vectorization)는 컴파일러 최적화 기법 중 하나로, 반복문(루프) 내에서되는 연산을 벡터 연산으로 변환함으로써 프로그램의 실행 속도를 향상시키는 기술이다. 이 기법은 현대 CPU가 제공하는 SIMD(Single Instruction, Multiple Data) 아키텍처를 활용하여, 여러 ...
# 복소근 **복소근**(complex root)은 복소수 범위에서 특정 방식의 해가 되는 복소수를 의미한다. 특히 다항방정식, 지수방정식, 삼각함수 방정식 등에서 실수 범위를 넘어서 해를 구할 때 등장하며, 복소해석학에서 중요한 개념 중 하나이다. 복소근은 실수부와 허수부로 구성된 복소수 형태로 표현되며, **대수학의 기본정리**(Fundamental ...
# 단진자 단진자(Simple Pendulum)는 고역학에서 진동 현상을 이해 데 핵심적인 모델 중 하나이다. 이상적인 조건 작동하는 단진 질량을 가진 물체(진자추)가 무질량이고 늘이지 않는 실에 매달려 중력의 영향을 받아 진동하는 시스템을 의미한다. 이 모델은 진동 운동의 기본 원리를 설명하고, 조화 운동과 관련된 수학적 분석을 가능하게 하며, 물리학 ...
# Levenshtein리 Levenshtein 거리(venshtein Distance)는 두열 간의 유사도를 측정하는 데 사용되는 **편집 거리**(Edit Distance)의 한 형태로, 1965년 러시아 수학자 블라디미르 레벤슈타인(Vladimir Levenshtein)에 의해 제안되었습니다. 이 거리는 하나의 문자열을 다른 문자열로 변환하기 위해 ...
# 양자정보과학 ## 개요 **양자정보과학**(Quantum Science, QIS)은 양역학의 원리를 정보의 저장, 전송, 처리 응용하는 학제 간 분야로, 물리학, 컴퓨터 과학, 수학, 공학 등 다양한 분야가 융합된 첨단 과학입니다. 이 분야는 고전 정보 이론의 한계를 극복하고, 양자역학의 독특한 특성인 **중첩**(superposition), **얽...
# SVM (서포트 벡터 머신) 서포트 벡터 머신(Support Vector Machine, SVM은 머신러닝 분에서 널리 사용되는 지도 학습 기반의 **분류 알고리즘**으로, 주로 이진 분류 문제에 사용되지만 다중 클래스 분류에도 확장 가능하다. SVM은 데이터 포인트를 고차원 공간으로 매핑하여 최적의 경계선(hyperplane)을 찾아 서로 다른 클래...
# NumPy NumPy( erical Python의 약자)는 파이썬에서 과학적 계산을 수행하기 위한 핵심 라이브러리로, 대규모치 데이터를 효율적으로 처리할 수 있는 다차 배열 객체(`nd`)와 이를 다루기 위한 다양한 수학 함수를 제공합니다. 특히 데이터과학, 머신러닝, 물리학, 공학 등 다양한 분야에서 기본 도구로 사용되며, Pandas, SciPy,...
# 최적화 ## 개요 최적화(Opt)는 주어진 조건에서 가장 좋은 해를 찾는 과정을 의미하며, 데이터과학 기계학습, 공학 경제학 등 다양한 분야에서 핵심적인 역할을 한다.과학에서는 모델의 예측 성능을 향상시키기 위해 손실 함수(Loss Function)를 최소화, 제약 조건을 만족하면서 목표 함수를 극대화/극소화하는 작업이 자주 발생한다. 최적화 알고리...
# 출력 게이트 개요 **출력 게이트**(Output)는 장단기 기억 장치(Long Short-Term Memory, LSTM)와 같은 순환 신경망(Recurrent Neural Network, R)의 핵심 구성 요소 중 하나로, 네트워크의 출력값을 조절하는 역할을 한다. 출력 게이트는 내 메모리 상태(Cell State)에서 얼마나 많은 정보를 최종...
# 시각화 기술 지리정보시스템(GIS, Geographic System)은 공간 데이터를, 저장, 분석하고 시각적으로 표현하는 데 중점을 둔 소프트웨 기술입니다. 중 **시각화 기술**(Visualization Technology)은 GIS의 핵심 기능 중 하나로, 복잡한 지리 데이터를 직관적이고 이해하기 쉬운 형태로 변환하여 사용자에게 정보를 전달하는 ...
# 가속도 ## 개요 **가속도**(acceleration)는 물체의 속도가 시간에 따라 변화하는 정도를 나타내는 물리량이다. 속도는 크기와 방향을 가지는 벡터이므로, 가속도 역시터량이며, 속도의 크기 변화뿐 아니라 방향 변화도 포함한다. 유체역학을 비롯한 물리학 전반에서 가속도는 운동을 설명하는 핵심 개념 중 하나이며, 뉴턴의 운동 법칙과 밀접한 관련...
# Damerau-Levenshtein 거리 ## 개요 **amerau-Levenshtein 거리**(Damerau-Levenshtein Distance)는 두 문자열 간의 유사도를 측정하는 편집 거리(Edit Distance)의 일종으로, 문자열을 서로 변환하기 위해 필요한 최소 편집 연산의 수를 계산한다. 이 거리는 러시아 수학자 **블라디미르 레벤...
# 이차 인수 ## 개요 이차 인수(因數, Quadratic Factor는 **이차식**(2차 다항식)으로 구성된 인수를 의미하며, 대수학에서 다항식의 인수분해 과정에서 중요한 역할을 한다. 일반적으로 이차 인수는 $ ax^2 + bx + c $ 형태의 다항식으로 표현되며, 여기서 $ a \neq 0 $이고, $ a, b, c $는 실수 또는 복소수 계...
# 상미분방정식 ## 개요 상분방정식(微分方程式, Ordinary Differential Equation, ODE)은 하나의 독립 변수를 가진 함수와 함수의 도함수 사이의 관계를 나타내는 미분방정식입니다. 이는 물리학, 공학, 생물학, 경제학 등 다양한 과학 및 공학 분야에서 자연 현상이나 시스템의 동역학을 모델링하는 데 핵심적으로 사용됩니다. 상미분방...
# 연쇄 법칙 ## 개요 **연쇄 법칙**( Rule)은 미적분학에서 합성함수의 도함수를 구하는 데 사용되는 핵심적인 법칙이다. 특히 기하학과 수학반에서 곡선, 곡면, 다변수 함수의 기울기와 변화율을 분석할 때 중요한 역할을 한다. 연쇄 법칙은 단순한 함수의 미분을 넘어서, 복잡한 함수 구조를 해석하고 계산하는 데 필수적인 도구로, 고등학교 수학부터 대...
# 고계 도함수 ## 개요 고계 도함수(higher-order derivatives)는 함수의 도함수를 다시 미분하여 얻어지는 도함수를 말한다. 가장 기본적인 도함수인 **1계 도함수**(first derivative)는 함수의 순간 변화율을 나타내며, 이 도함수를 다시 미분하면 **2계 도함수**(second derivative), 또 이를 미분하면 ...
# 버퍼링 ## 개요 **버퍼링**(Buffer)은 지리시스템(GIS, Geographic Information System)에서 핵심적인 공간 분석 기법 중 하나로, 특정 지리적 객체(포인트, 라인, 폴리곤 등) 주변에 일정한 거리 내에 위치한 영역을 생성하는 과정을 의미한다. 이 기법은 도시 계획, 환경 보호, 재난 관리, 교통 분석 등 다양한 분야...