Adjusted R-s ## 개요**Adjusted R-squared수정된 결정계수)는귀분석에서 모의 적합도를 평가하는 지표 중 하나로, 일반적인 **R-squared**(결계수)의계를 보완하기 위해 제안된 통계량이다. R-squared 독립변수들이 종속변수를 잘 설명하는지를 나타내는 값이지만, 독립변수를 추가할수록 무조건 증가하는 성향이 있어 모델의 과...
검색 결과
검색어를 입력하세요.
# 오차항 오차항(Error Term)은 통계학과귀 분석에서 매우 중요한 개념, 모델이 설명하지 못하는 데이터의 변동성을 나타냅. 이는 관된 종속 변수의 값과 회귀 모델이 예측한 값 사이의 차이를 의미하며, 모델의 정확도를 평가하고 개선하는 데 핵심적인 역할을 합니다. 오차항은 일반적으로 잔차(Residual)와 혼동되기도 하지만, 통계 이론에서는 모집단...
# MSE ## 개요 **MSE**(Mean Squared Error, 평균 제곱 오차)는 회귀(regression) 문제에서 예측 모델의 성능을 평가하는 데 널리 사용되는 지표입니다. 이는 예측과 실제 관측값 사이의 차이(오차)를 제곱한 후, 그 평균을 계산함으로써 모델의 정확도를 수치화합니다. MSE는 인공지능, 특히 머신러닝 및 딥러닝 모델의 학습...
# 그래디언트 부스 회귀 ## 개요 **그래디언트 부스팅 회**(Gradient Boosting Regression)는 머신러닝에서 회귀(regression) 문제를 해결하기 위해 사용되는 강력한 앙상블 학습 기법입니다. 이은 여러 개의 약한 학습기(weak learners), 주로 결정 트리(decision tree)를 순차적으로 결합하여 강한 예측 ...
# 분류 ## 개요 **분류**(Classification)는 머신러닝에서 대표적인 지도 학습(Supervised Learning 과제 중 하나로, 주어 입력 데이터를 미리 정의된 **카테고리**(클래스) 중 하나로 할당하는 작업을 말합니다. 예 들어, 이메이 스팸인지 정상인지 판단하거나, 의료 데이터를 기반으로 환자가 특정 질병에 걸렸는지를 예측하는 ...
# L2 정규화 개요 **L2 정규화**(2 Regularization), 또는 **리지 정규화**(Ridge Regularization), **중치 감소**(Weight Decay)는 머신러닝 및 딥러닝 모델에서 **과적합**(Overfitting)을 방지하기 위해 사용되는 대표적인 정규화 기법 중 하나입니다. 이 방법은 모델의 가중치에 제약을 가하...
# 리지 회귀 리지 회귀(Ridge Regression) 선형 회귀 분석의종이지만, **과적합**(overfitting)을 방지하기 위해 정규화(regularization) 기법을 적용한 고급 회귀 모델이다. 특히 독 변수들 사이에 **다중공선성**(multicollinearity)이 존재할 때 일반 선형 회귀보다 더 안정적인 계수 추정을 제공한다. 리지...
# 시그모이드 함수 ## 개요 시모이드 함수(Sigmoid Function)는 S자 형태의 곡선을 가지는 수학적 함수로, 특히 인공지능, 통계학, 생물학, 그리고 수학 교육 등 다양한 분야 중요한 역할을. 이 함수는 입력값이 매우 작을 때 출력값이 0에 가까워지고, 입력값이 매우 클 때는 출력값이 1에 가까워지는 특성을 가지며, 중간 영역에서는 부드러운...
# GPT-2 ## 개요 **GPT-2**(Generative Pre-trained Transformer2)는 OpenAI에서 2019년 발표한 대규모 언어 모델로, 자연어 처리(NLP) 분야에서 획기적인 성과를 거둔 모델 중 하나입니다. GPT-2는 트랜스포머(Transformer) 아키텍처를 기반으로 하며, 방대한 양의 인터넷 텍스트를 학습하여 텍스...
# MSE ## 개요 **MSE**(Mean Squared Error, 평균 제곱 오차)는 인공지능 및 기계학습 모델의 성능을 평가하는 대표적인 회귀(regression) 문제 지표 중 하나입니다. 예측값과 실제 관측값 사이의 차이를 제곱한 후, 그 평균을 취함으로써 모델의 예측 정확도를 수치화합니다. MSE는 오차의 크기를 강조하며, 특히 큰 오차에 ...
# R² ## 개요 **R²**(R-squared, 결정계수)는 통계학 및 기계학습에서 회귀 모델의 성능을가하는 대표 지표 중 하나입니다. R² 모델이 종속 변수(dependent variable)의 분산 중 얼마나 많은 부분을 설명할 수 있는지를 나타내는 값으로, 일반적으로 0에서 1 사이의 값을 가집니다. 이 값이 1에 가까울수록 모델이 데이터의 변...
# 경사하강법경사하강법(Graidentcent)은 기계습과 인공지능 분야에서 모델의 학습 과정에서 손실 함수(Loss Function)를 최소화하기 위해 널리 사용되는 **최적화 알고리즘**이다. 이 알고리즘은 주어진 함수의 기울기(경사)를 계산하여, 그 기울기가 가장 가파르게 내려가는 방향으로 매 반복마다 모델의 매개변수를 조정함으로써 최솟값을 찾아가는 ...
# 목표 변수 ## 개 **목표 변수**(Target Variable)는 데이터 과학 및 머신러닝 분야에서 모델이 예측하거나 설명하려는 주요 변수를 의미합니다. 이는 종속 변수(Depend Variable), 응답 변수(Response Variable), 또는 출력 변수(Output Variable)라고도 불리며, 모델 학습의 중심이 되는 요소입니다. ...
# 수학적 표현 수학적 표현(Mathematical Expression)은 수학적 개념, 관계, 연산 등을 기호와 언어를 통해 명확하고 간결하게 전달하는 수단이다. 수학은 추상적인 사고를 기반으로 하기 때문에, 이를 효과적으로 기술하고 전달하기 위해서는 체계화된 표현 방식이 필수적이다. 수학적 표현은 단순한 기호 나열을 넘어서 논리적 구조와 의미를 내포하...
# 회귀 문제 ## 개요 **회귀 문제**(Regression Problem)는 머신러닝에서 지도 학습(Supervised Learning)의 대표적인 과제 중 하나로 입력 변수(특징)를 기반으로연속적인 수치형 출력값**(목표 변수)을 예측하는 작업을 의미한다. 예를 들어, 집의 면적, 위치, 방 수 등을 바탕으로 집값을 예측하거나, 과거의 기온 데이터...
# 더미 변수 ## 개 더미 변수(Dummy Variable 또는 **일변량 가변수**(One-hot Encoding Variable)는 범주형 데이터(categorical data) 수치형 데이터로 변환하기 위해 사용하는 통계 및 데이터 과학의 핵심 기법입니다. 머신러닝 모델이나 회귀 분석과 같은 수적 알고리즘은 일반적으로 숫자 데이터만을 입력으로 처...
# 최소 제곱법 ## 개요 최소 제곱법**(Least Squares Method)은 통계학과 데이터 분석에서 널리 사용되는 수학적 기법으로,측된 데이터와델의 예측값 사이의 오차를 최소화 방식으로 모델의 매개변수를 추정하는 방법이다. 특히 **회귀분석**(Regression Analysis)에서 독립변수와 종속변수 간의 관계를 설명하기 위한 직선(또는 곡...
# 선형 최소 제곱법 ## 개요 선형 최 제곱법(Linear Least Squares Method)은 통계학 수치해석에서 널리 사용되는귀분석 기법으로, 관측된 데이터와 모델의 예측값 사이의 **잔차 제곱합**(Sum of Squared Residuals)을 최소화하여 모의 파라미터를 추정하는 방법입니다. 이 방법은 선 회귀 모델의 추정에 가장 기본적이면...
# 논리적 연산 ## 개요 논리적 연산(Logical Operation)은 컴퓨터 과학과 데이터 과학의 기반을 이루는 수학적 연산으로, 참(True)과 거짓(False)의 이진 값을 기반으로 복잡한 조건을 처리합니다. 이 연산은 데이터 분석, 알고리즘 설계, 인공지능 모델 개발 등 다양한 분야에서 필수적인 역할을 하며, 특히 데이터 과학에서는 데이터 필터...
# L2 정규화 ## 개요 L2 정규화(Ridge Regularization)는 머신러닝 모델의 **과적합**(Overfitting)을 방지하기 위해 사용되는 기법입니다. 이는 손실 함수(Loss Function)에 **가중치의 제곱합**을 패널티 항으로 추가하여 모델 복잡도를 제어하는 방식으로 작동합니다. 특히 데이터가 적거나 특성(Feature) 수가...