# 비유클리드 기학 ## 개요 비유클드 기하학(非Euclidean幾何學,-Euclidean Geometry)은 유클리 기하학의 평행선 공리를 따르지 않는 기하학 체계를 의미한다. 고전적인 유클리드 기하학 평면 위에서 직선과 각, 도형의 성질을 다루며, 특히 **"한 직선 밖의 한 점을 지나면서 그 직선과 평행한 직선은 오직 하나만 존재한다"** 는 제5...
검색 결과
"기하학"에 대한 검색 결과 (총 38개)
# 기하학 ## 개요 기하학(幾何學)은 수학의 한 분야로, 공간과 형태, 크기, 상호관계를 연구하는 학문이다. 고대부터 현대에 이르기까지 인간이 자연현상과 물리적 세계를 이해하기 위해 발전시킨 체계적인 지식으로, 공학, 물리학, 컴퓨터 과학 등 다양한 분야와 밀접한 연관을 가진다. 기하학은 도형의 성질을 탐구하는 동시에 수학적 추론과 논리를 활용해...
# 오목 오목은 미분학에서 함수의 그래가 가지는 곡선의 성질 중 하나로, 그래프의 **곡률 방향**을 설명하는 중요한 개념이다. 함수의 오목성(또는 볼성)은 함수의 2차 도함수의 부호를 판단할 수 있으며, 최적화 이론, 경제학, 물리학 등 다양한 분야에서 활용된다. 본 문서에서는 오목 함수의 정의, 수학적 조건, 기하학적 의미, 관련 개념 및 응용 사례를...
# 중력파 개요 중력파(Gravit Wave)는 아슈타인의 일반대성 이론 의해 예측된공간의 파동으로, 질량을 가진 물체가 가속 운할 때 시공의 곡률이 변화하며 발생하는 현상이다. 중력파는 빛의 속도로 우주를 전되며, 지구를 통과할 때 극미세한 시공간의 왜곡을 유발한다. 2015년 9월 14일, 레이저 간섭계 중력파 관측소(LIGO)에 의해 최초로 직접...
퍼터 퍼터utter)는 골프에서 그 위에서 공을 홀에 넣기 위해 사용하는 특수한 골프 클럽이다. 골프 경기에서 가장 정교한트로크가 요구되는 클럽으로, 일반 경기 중 약 40%의 샷을 퍼터 수행한다. 정한 방향성과 거리 감각 요구되며,퍼의 스코어 관에 매우 중요한 역할을 한다. ##요 퍼터는프 클럽 중 유일하게 그린에서 사용되는 클럽이다. 그린은 잔디가...
# 구조 해석 구조 해석(Structural Analysis)은 건축물, 교량, 기계 부품, 항공기, 선박 등 다양한 구조물이 외부 하중(힘,력, 진동 온도 변화 등) 받을 때 어떻게응하는지를 수적·물리적으로 분하는 기계공학 및 토목공학의 핵심 분야이다. 이는 구조물의 **강도**, **강성**, **안정성**, **내구성** 등을 평가하고, 설계 단계에...
# 델라나이 삼각분할 ## 개요 델라이 삼각분할(Delaunay Triangulation)은산 기하학 중요한 개념 중 하나로 주어진 평면상의 점 집합을 삼각형으로 분할하는 방법입니다. 이 분할 방식은 삼각형의 내부에 다른 점이 포함되지 않도록 하는 **델라나이 조건**(Delaunay Condition)을 만족시킵니다. 즉, 각 삼각형의 외접원(circ...
# 변곡점 ## 개요 변곡점(變曲點, inflection point)은 함수 그래프가 **오목에서 볼록으로**, 또는 **볼록에서 오목으로** 변하는 지점을 의미한다. 즉, 함수의 **곡률**(curvature)이 부호를 바꾸는 점으로, 그래프의 형태가 변하는 전환점이라 할 수 있다. 변곡점은 미분학에서 함수의 그래프를 분석하고 해석하는 데 중요한 역할...
범주론 ## 개요 범주론(Category Theory)은 수학의 분야로, 다양한 수학적 구조와 그 사이의 관계를 추상적으로 다루는 이이다. 1940년대에 샘UEL 에일렌버그(Samuel Eilenberg와 새먼 매클레인(Saunders Mac Lane)에 의해 위상수학과 호몰로지 대수학의 개념을 일반하기 위해 도입되었으며 오늘날에는 수학 전반은 물론 컴...
행렬식 행렬식**(式, Determinant)은 선형대수학에서 정방행렬(square matrix)에 대응되는 하나의 스칼라 값으로, 행렬의 여러 중요한 성질을 판별하는 데 핵심적인 역할을 한다. 행렬식은 행렬이 가역(invertible)인지 여부, 선형 방정식의 해의 존재성, 벡터 공간에서의 기하학적 해석(예: 부피 변화율) 등과 밀접한 관련이 있다. 이...
# PostgreSQL PostgreSQL(포스트그리이에스큐엘)은 강하고 확장 가능한 **관계형 데이터베이 관리 시스템**(RDBMS)으로,소스 기반으로 개발 및 배포되고 있으며, SQL 표준을 충실히 따르면서도 고급 기능을 다수 제공하는 것으로 유명합니다. 1986년에 캘리포니아 대학교 버클리에서 시작된 POSTGRES 프로젝트를 기반으로 하며, 현재는...
# 삼각 부등식 ## 개요 **삼각 부등식**(Triangleequality)은 선대수학에서 벡 공간의 노름orm)이 만해야 하는 핵심 성질 중 하나로, 두 벡터의 합의 크기가 각 벡터의 크기의 합보다 작거나 같다는 원리를 수학적으로 표현한 것이다. 이 부등식은 기하학적 직관에서 유래되었으며, 삼각형에서 임의의 두 변의 길이의 합이 세 번째 변의 길이보...
# 최적의 경계선 ## 개요 **최적 경계선**(Optimal Decision)은 머신러닝, 지도 학습(Supervised Learning)에서 분류(Classification) 문제 해결할 때 사용 핵심 개념 중 하나. 이는 서로 다른 클래스에 속한 데이터 포인트들을 가장 잘 구분할 수 있는 기하학적 경계를 의미합니다. 최적의 경계선은 모델이 새로운 ...
# 연속 함수 ## 개요 **연속 함수**(continuous function)는 위상수학에서 가장 기본적이면서도 핵심적인 개념 중 하나이다. 직관적으로, 연속 함수란 입력값이 조금만 변할 때 출력값도 조금만 변하는 함수를 의미한다.는 기하학적으로 "끊김 없이 이어지는 그래프"를 그리는 함수와 유사하다. 그러나 위상수학에서는 거리 개념이 필요 없이, *...
토폴로지 ## 개요 **토폴로지**(topology)는 수학의 한 분야로, 기하학적 도형이나 공간의 **연속적인 변형** 아래에서 보존되는 성질을 연구하는 학문입니다. 즉, 늘이거나 구부리거나 비틀어도 형태가 바뀌지 않는 **위상적 성질**(topological properties)을 다룹니다. 예를 들어, 컵과 도넛은 서로 다른 모양이지만, 토폴로지에...
# 토폴로지 ## 개요 **토폴로지**(Topology)는 수학의 한 분야로, 공간의 형상과 구조를 연속적인 변형(예: 늘이기, 구부리기 등) 하에서도 유지되는 성질을 연구하는 학문이다. 이러한 성질은 거리나 각도와 같은 정량적 요소보다는 점, 선, 면 간의 **위치 관계**와 **연결성**에 초점을 맞춘다. 데이터과학, 특히 **공간 분석**(Spat...
# 오버레이 분석 오버레이 분석(Overlay Analysis은 지리정보시스템(GIS, Geographic Information System)에서 핵심적인 공간분석 기법 중 하나로, 두 개 이상의 공간 레이어(지리 데이터 층)를 겹쳐서 새로운 공간 정보를 도출하는 방법입니다. 기법은 서로 주제의 지리 데이터를 통합하여 공간적 관계를 이해하고, 복합적인 의...
# 위상수학 ## 개요 **위상수학**(topology)은 기하학의 한 분야로,형이나 공간의 **연속적인 변형** 아래에서 불변인 성질을 연구하는 수학의 분야이다. 위상수학에서는 길이, 각도, 면적과 같은 정량적인 기하학적 속성보다는, 공간의 **연결성**, **경계**, **연속성**, **열림과 닫힘**과 같은 질적인 성질에 주목한다. 예를 들어, ...
# 연쇄 법칙 ## 개요 **연쇄 법칙**( Rule)은 미적분학에서 합성함수의 도함수를 구하는 데 사용되는 핵심적인 법칙이다. 특히 기하학과 수학반에서 곡선, 곡면, 다변수 함수의 기울기와 변화율을 분석할 때 중요한 역할을 한다. 연쇄 법칙은 단순한 함수의 미분을 넘어서, 복잡한 함수 구조를 해석하고 계산하는 데 필수적인 도구로, 고등학교 수학부터 대...
# 고계 도함수 ## 개요 고계 도함수(higher-order derivatives)는 함수의 도함수를 다시 미분하여 얻어지는 도함수를 말한다. 가장 기본적인 도함수인 **1계 도함수**(first derivative)는 함수의 순간 변화율을 나타내며, 이 도함수를 다시 미분하면 **2계 도함수**(second derivative), 또 이를 미분하면 ...