# 복소수 복소수(複素數, Complex Number)는 실수부와 허수부로 구성된 수 체계로, 수학 전반과 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다. 복소수는 2차 방정식의 해가 실수 범위에서 존재하지 않을 때 그 해를 표현할 수 있는 수학적 도구로 등장하였으며, 현대 수학에서 해석학, 대수학, 기하학 등과 깊은 연관을 맺고 있다. 특히 *...
검색 결과
"파동함수"에 대한 검색 결과 (총 14개)
# 확률 진폭 ## 개요 **확률 진폭**(probability amplitude)은 양자역학에서 입자의 상태를 기술하는 핵심 개념 중 하나로, 특정한 측정 결과가 발생할 확률을 계산하는 데 사용되는 복소수 값을 말한다. 고전역학과 달리 양자역학은 입자의 위치, 운동량, 에너지 등의 물리량을 확정적으로 예측하는 것이 아니라, 가능한 결과들에 대한 **확...
# 닐스 보어 ## 개요 닐스 헨리크 다비드 보어(Niels Henrik David Bohr, 1885년 10월 7일 – 1962년 11월 18일)는 덴마크의 이론 물리학자로, 원자 구조와 양자 이론의 발전에 기여한 세계적인 학자이다. 그는 현대 물리학, 특히 양자역학의 기초를 마련한 인물로 평가되며, 1922년 노벨 물리학상을 수상하였다. 보어는 ‘보...
# 쉬뢰딩거 ## 개요 에르빈 루트비히 쉬뢰딩거(Erwin Rudolf Josef Alexander Schrödinger, 1887년 8월 12일 – 1961년 1월 4일)는 오스트리아 출신의 이론 물리학자로, 양자역학의 발전에 결정적인 기여를 한 인물이다. 그는 **파동역학**(wave mechanics)을 창시하고, 미시 세계의 입자들을 기술하는 *...
# 불확정성 원리 ## 개요 **불확정성 원리**(Uncertainty Principle)는 양자역학의 근본적인 원리 중 하나로, 특정 물리량 쌍(예: 위치와 운동량)을 동시에 무한한 정밀도로 측정할 수 없다는 것을 명시한다. 이 원리는 1927년 독일의 물리학자 **베르너 하이젠베르크**(Werner Heisenberg)에 의해 제안되었으며, 고전역학...
# 양자역학 ## 개요 양자역학(Quantum Mechanics)은 원자 및 아원자 입자와 같은 미시 세계의 물리적 현상을 설명하는 이론 체계로, 20세기 초에 발전한 현대 물리학의 핵심 분야 중 하나이다. 고전역학이 행성의 운동이나 일상적인 물체의 움직임을 정확히 설명할 수 있지만, 전자, 광자, 원자와 같은 매우 작은 스케일의 입자들은 고전 물리 법...
# 가우스-라게르 적분 ## 개요 **가우스-라게르 적분**(Gauss-Laguerre quadrature)은 수치해석에서 사용되는 수치적 적분 기법 중 하나로, **무한 구간** $[0, \infty)$에서 정의된 함수의 적분을 근사하는 데 특화되어 있다. 이 방법은 지수 함수 $e^{-x}$를 포함하는 가중치 함수를 가지며, 주어진 함수 $f(x)$...
# 라게르 다항식 라게르 다항식(Laguerre polynomials)은 수학, 특히 직교 다항식 이론에서 중요한 위치를 차지하는 다항식 계열이다. 이 다항식들은 양자역학, 수치해석, 확률론 등 다양한 분야에서 응용되며, 특히 수소 원자 모형의 파동함수 해석에 핵심적인 역할을 한다. 본 문서에서는 라게르 다항식의 정의, 성질, 생성 방법, 직교성, 그리고...
# 가우스구적법 ## 개요 **가우스구적법**(Gaussian Quadrature)은 수치적 적분(Numerical Integration) 방법 중 하나로, 주어진 구간에서 함수의 적분값을 매우 높은 정확도로 근사하는 기법이다. 이 방법은 단순한 사다리꼴 법칙이나 심프슨 법칙과 달리, 적분 점**(quadrature points)**과 그에 대응하는 *...
# 에르미트 다항식 에르미트 다항식(Hermite polynomial)은 수학, 특히 직교 다항식 이론과 양자역학, 확률론 등 다양한 분야에서 중요한 역할을 하는 특수함수의 일종입니다. 이 다항식은 프랑스의 수학자 샤를 에르미트(Charles Hermite)의 이름을 따서 명명되었으며, 가우스 함수를 가중치로 갖는 직교성을 지닌 다항식 계열에 속합니다. ...
# 복소평면 ## 개요 복소평면(complex plane)은 복소수를하학적으로 표현하기 위해 사용하는 2차원 평면으로, 수학 전반에서 복소수의 성질을 시각화하고 분석하는 데 핵심적인 도구이다. 복소수는 실수부와 허수부로 구성므로, 이를 각각 평면의 가로축(실수축)과 세로축(허수축)에 대응시켜 점으로 나타낼 수 있다. 이 평면은 **가우스 평면**(Gau...
# 복소수 복소수(複素數, Complex)는 실수부와 허부로 구성된 수 체계로 수학, 물리학, 공학 등 다양한 분야에서 핵심적인 역할을 한다.소수는 차원 평면상 점으로 시각화할 수, 복소해석학(Complex Analysis의 기초를성한다. 이 문서 복소수의 정, 대수적 성질, 기하적 표현 연산법, 그리고 응용 분야에 대해 체계적으로 설명한다. --- ...
# 복소근 ## 개요 복근(複素, Complex Root)이란정식의 해 실수부와 허부를 모두 가질 수 있는 복소수 형태 근을 의미한다. 특히 실계수 다방정식에서 실수 범위 내 해를 찾을 수 없을 때, 복수 범위로 확장하면 해가 존재하는 경우가 많으며, 이러한 해를 복소근 한다. 복소근은 대학의 핵심 개념 중 하나로,16세기 이후 복소수의 체계적인 도입과...
# 복소근 **복소근**(complex root)은 복소수 범위에서 특정 방식의 해가 되는 복소수를 의미한다. 특히 다항방정식, 지수방정식, 삼각함수 방정식 등에서 실수 범위를 넘어서 해를 구할 때 등장하며, 복소해석학에서 중요한 개념 중 하나이다. 복소근은 실수부와 허수부로 구성된 복소수 형태로 표현되며, **대수학의 기본정리**(Fundamental ...