# 회로 이론 ## 개요 **회로 이**(Circuit Theory)은 전적 현상을 이해하고 전기 회의 동작을석하기 위한 기초적인 이론 체계이다. 전자공학, 전기공학, 통신공학 등 다양한 공학 분야의 근간을 이루며, 실제 전자기기 설계에서부터 전력 시스템 운영에 이르기까지 폭넓게 적용된다. 회로 이론은 전류, 전압, 저항, 인덕턴스, 정전용량 등과 같은...
검색 결과
"라플라스 변환"에 대한 검색 결과 (총 8개)
# 디지털 제어 디지 제어(Digital)는 아날로그 신호를지털 신호 변환하여 제어스템을 구현하는 기술로, 현대 제어공학의 핵심 분야 중 하나이다. 전통적인 아날로그 제어 시스템이 연속 시간 신호를 기반으로 동작한다면, 디지털 제어 시스템은 **샘플링된 이산 시간 신호**를 사용하여 시스템의 동작을 제어한다. 이는 마이크로프로세서, 디지털 신호 처리기(D...
# 편미분방정식 ## 개요 편미방정식(Partial Differential Equation,DE)은 두 개 이상의립 변수를 갖는와 그 함수의 **편미분**(partial derivative)들 사이의 관계를 나타내는 수학적 방정식입니다. 일반 미분방정식(ODE)이 하나의 독립 변수(예: 시간)에 대한 함수의 도함수를 다룬다면, 편미분방정식은 공간과 시간...
# PID 제어기 ## 개요 PID 제어기(PID Controller, Proportional-Integral-Derivative Controller)는 제어공학에서 가장 널리 사용되는 피드백 제어기 일종으로, 시스템의 출력이 목표값(Setpoint)에 빠르고 정확하게 수렴하도록 제어 입력을 조정하는 장치입니다. PID 제어기는 비례(P), 적분(I),...
# 신호 처리 신호 처리(Signal Processing)는 물리적 현상이나 시스템에서 발생하는 신호를 분석, 변환, 조작하여 유용한 정보를 추출하거나 신호의 품질 향상시키는 기술 및 학문 분야이다. 신호는 시간 또는 공간에 따라 변화하는 물리량으로, 음성, 이미지, 전압, 진동, 전파 등 다양한 형태로 나타날 수 있다. 신호 처리는 통신, 의료 영상, ...
# 편미분방정식 ## 개요 편미분방정식(偏微分方程式, Partial Differential Equation, 이하 PDE)은 개 이상의 독립 변수를 가지는 함수와 그 함수의 **편미분**(partial derivative)들 사이의 관계를 나타내는 방정식이다. 이는 물리학, 공학, 경제학, 생물학 등 다양한 분야에서 자연 현상을 수학적으로 모델링하는 데...
# 미분방정식 미분방정식(Differential Equation은 하나 이상의 변수에 대한 함수와 그 함수의 도함수(미분)가 포함된 방정식을 의미합니다. 이 자연과학, 공학, 경제학, 생물학 등 분야에서 시스템의 동적 변화를 모델링하는 데 핵심적인 도구로 사용됩니다. 미분방정식을 통해 물체의 운동, 열의 전도, 전기 회로의 거동, 인구 성장, 감염병 확산...
# 분수분해 ## 개요 분수분해(Partial Fraction Decomposition)는 복잡한 유리 함수를 더 단순한 유리 함수의 합으로 분해하는 대수적 기법입니다. 주로 적분 계산, 미분 방정식 풀이, 역라플라스 변환 등에서 활용되며, 유리 함수의 분모를 일차 또는 이차 인수로 분해한 뒤 분자를 적절히 조합하여 표현합니다. ## 분수분해의 정의와 ...