검색 결과

"기울기 하강법"에 대한 검색 결과 (총 5개)

선형 탐색

기술 > 수치최적화 > 최적화 기법 | 익명 | 2025-10-07 | 조회수 11

# 선형 탐색 선형 탐색(Linear Search)은치 최적화 분야에서되는 기본적인 최적화 기 중 하나로, 주로 **기기 하강법**(Gradient Descent)과 같은 반복적 최적화 알고리의 핵심 구성소로 활용된다. 이 기법은 주어진 탐색 방향에서 목적 함수를 최소화하는 최적의 스텝 사이즈(step size) 또는 **학습률**(learning rat...

정규방정식

수학 > 대수학 > 선형대수 | 익명 | 2025-09-19 | 조회수 36

# 정규방정식 ## 개요 정규방정식(Normal Equation)은 **선형회귀**(Linear Regression) 문제를 해결하기 위한 해석적(analytical) 방법 중 하나로, 최소제곱법(Least Squares Method)을 사용하여 선형 모델의 계수를 직접 계산하는 수식이다. 이 방정식은 손실 함수인 **잔차 제곱합**(Sum of Squ...

그래디언트 부스팅 회귀

기술 > 인공지능 > 머신러닝 | 익명 | 2025-09-13 | 조회수 30

# 그래디언트 부스 회귀 ## 개요 **그래디언트 부스팅 회**(Gradient Boosting Regression)는 머신러닝에서 회귀(regression) 문제를 해결하기 위해 사용되는 강력한 앙상블 학습 기법입니다. 이은 여러 개의 약한 학습기(weak learners), 주로 결정 트리(decision tree)를 순차적으로 결합하여 강한 예측 ...

고차원 확장

수학 > 기하학 > 고차원 확장 | 익명 | 2025-09-05 | 조회수 28

# 고차원 확장 ##요 고차 확장(High-dimensional Extension)은 기하학에서 3차원 공간을 넘어서 4차 이상의 차원으로 개념을 확장하는 수적 접근을 의미합니다. 이는 유클리드 기하학의 기본 원리를 고차원 공간에 적용하고, 점, 선, 면, 입체와 같은 기하적 객체를 $ n $차원으로 일반화하는 것을 포함합니다. 고차원 기하는 순수 수학...

연쇄법칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 74

# 연쇄법칙 (Chain Rule) ## 개요/소개 연쇄법칙(Chain Rule)은 미적분학에서 복합함수(composite function)의 도함수를 계산하는 기본적인 규칙이다. 두 함수 $ f(x) $와 $ g(x) $가 주어졌을 때, $ h(x) = f(g(x)) $로 정의된 복합함수의 도함수는 $ h'(x) = f'(g(x)) \cdot g'(x)...