검색 결과

"일반"에 대한 검색 결과 (총 162개)

Tiki Wiki

기술 > 소프트웨어 > 모듈 기반 위키 | 익명 | 2025-07-18 | 조회수 11

# Tiki Wiki ## 개요/소개 Tiki Wiki는 오픈소스 기반의 모듈형 위키 플랫폼으로, 웹사이트 구축, 협업 도구, 커뮤니티 포털 등 다양한 용도로 활용됩니다. 2002년에 처음 개발된 이 프로젝트는 PHP 언어를 기반으로 하며, MySQL 또는 MariaDB와 같은 데이터베이스 시스템과 호환됩니다. Tiki Wiki의 주요 특징은 **모듈...

마크다운 언어

기술 > 프로그래밍 > 표준 형식 | 익명 | 2025-07-18 | 조회수 5

# 마크다운 언어 ## 개요 마크다운(Markdown)은 간단한 텍스트 형식을 사용해 문서를 작성하고 HTML과 같은 포맷으로 변환할 수 있는 **표준 형식**입니다. 2004년에 존 그루버(John Gruber)와 아담 보그스(Aaron Swartz)가 개발한 이 언어는 프로그래머, 기술 문서 작가, 블로거 등 다양한 분야에서 널리 사용됩니다. 마크다운...

프로토타입

기술 > 소프트웨어 > 프로토타입 | 익명 | 2025-07-18 | 조회수 11

# 프로토타입 ## 개요 프로토타입(Prototype)은 소프트웨어 개발 및 디자인 과정에서 초기 아이디어를 시각화하고 검증하기 위해 제작되는 모형입니다. 이는 제품의 기능, 사용자 경험(UX), 인터페이스(UI) 등을 탐구하는 데 활용되며, 개발 전 단계에서 오류를 줄이고 피드백을 수집하는 데 중요한 역할을 합니다. 프로토타입은 단순한 개념 검증...

해카톤

기술 > 소프트웨어 > 개발경험 | 익명 | 2025-07-18 | 조회수 14

# 해카톤 ## 개요 해카톤(Hackathon)은 기술적 문제 해결을 목표로 한 협업형 이벤트로, 주로 소프트웨어 개발자, 디자이너, 업계 전문가 등이 참여하여 짧은 시간 내에 프로토타입(Prototype)이나 솔루션을 제작하는 활동입니다. 일반적으로 24시간에서 수일간 진행되며, 참가자는 팀 단위로 작업하며 창의성과 기술력을 결합해 혁신적인 아이디어를 ...

토큰화

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 18

# 토큰화 (Tokenization) ## 개요/소개 토큰화는 자연어 처리(NLP) 및 데이터 분석에서 텍스트를 의미 있는 단위로 나누는 기초적인 프로세스입니다. 이 과정은 텍스트를 컴퓨터가 이해할 수 있는 형태로 변환하는 데 필수적이며, 이후 모델 학습, 검색 엔진 구축, 데이터 분석 등 다양한 응용에 활용됩니다. 토큰화는 단어, 문장, 문자 등으로 나...

완전 연결 층

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-17 | 조회수 8

# 완전 연결 층 ## 개요 완전 연결 층(Fully Connected Layer)은 인공지능(AI) 분야에서 신경망(Neural Network)의 핵심 구성 요소 중 하나로, 입력 데이터와 출력 데이터 간의 복잡한 관계를 모델링하는 데 사용됩니다. 이 층은 전층 연결 구조를 가지며, 모든 노드가 이전 계층의 모든 노드와 연결되어 있습니다. 일반적으로 신...

평균 풀링

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 20

# 평균 풀링 (Average Pooling) ## 개요/소개 평균 풀링(Average Pooling)은 딥러닝에서 네트워크의 공간적 차원을 축소하고, 계산 복잡도를 줄이기 위해 사용되는 기법이다. 특히 컨볼루션 신경망(Convolutional Neural Network, CNN)에서 입력 데이터(예: 이미지)의 특징을 추출한 후, 지역적인 정보를 평균화...

맥스 풀링

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 15

# 맥스 풀링 (Max Pooling) ## 개요/소개 맥스 풀링(Max Pooling)은 딥러닝에서 널리 사용되는 **공간적 차원 축소 기법**으로, 특히 **컨볼루션 신경망(Convolutional Neural Network, CNN)**에서 중요한 역할을 합니다. 이 기법은 입력 데이터의 공간 크기를 줄이면서 주요 특징(예: 엣지, 패턴)을 유지하는...

풀링 층

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-17 | 조회수 9

# 풀링 층 (Pooling Layer) ## 개요/소개 풀링 층(Pooling Layer)은 딥러닝에서 특히 **컨볼루션 신경망(Convolutional Neural Network, CNN)**에 사용되는 핵심 구성 요소로, 입력 데이터의 공간적 차원을 축소하여 계산 효율성을 높이고 모델의 일반화 능력을 향상시키는 역할을 합니다. 이 층은 특성 맵(Fe...

필터

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 16

# 필터 ## 개요 필터는 데이터 과학에서 중요한 역할을 하는 기술로, 원치 않는 정보를 제거하거나 특정 조건에 부합하는 데이터만 추출하는 과정을 의미합니다. 이는 데이터 정제, 특성 선택, 신호 처리 등 다양한 분야에서 활용되며, 분석의 정확도와 효율성을 높이는 데 기여합니다. 필터는 단순한 수학적 연산부터 복잡한 머신러닝 모델까지 다양한 형태로 구현됩...

백프로파게이션

기술 > 데이터과학 > 분석 | 익명 | 2025-07-17 | 조회수 12

# 백프로파게이션 (Backpropagation) ## 개요 백프로파게이션(Backpropagation)은 인공 신경망(Artificial Neural Network, ANN)을 학습시키는 데 사용되는 주요 알고리즘 중 하나입니다. 이 기법은 **오차 역전파**라고도 불리며, 네트워크의 출력과 실제 타겟 값 사이의 오차를 최소화하기 위해 가중치와 편향을 ...

CNN

기술 > 인공지능 > 머신러닝 | 익명 | 2025-07-16 | 조회수 20

# 컨볼루셔널 네트워크 (CNN) ## 개요 컨볼루셔널 네트워크(Convoluted Neural Network, CNN)는 인공지능(AI) 분야에서 이미지 처리 및 시각적 데이터 분석에 특화된 딥러닝 기법입니다. 1980년대 후반부터 발전해온 이 기술은 컴퓨터 비전의 혁신을 주도하며, 객체 탐지, 이미지 분류, 패턴 인식 등 다양한 응용 분야에서 핵심 역...

복합함수

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 27

# 복합함수 ## 개요 복합함수(composite function)는 수학에서 두 함수를 결합하여 새로운 함수를 생성하는 방법이다. 이 개념은 미적분학, 해석학, 공학 등 다양한 분야에서 핵심적인 역할을 하며, 특히 복잡한 수식의 도함수 계산에 필수적이다. 복합함수는 하나의 함수의 결과를 다른 함수에 입력으로 사용하는 방식으로 정의되며, 이는 함수의...

연쇄법칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 29

# 연쇄법칙 (Chain Rule) ## 개요/소개 연쇄법칙(Chain Rule)은 미적분학에서 복합함수(composite function)의 도함수를 계산하는 기본적인 규칙이다. 두 함수 $ f(x) $와 $ g(x) $가 주어졌을 때, $ h(x) = f(g(x)) $로 정의된 복합함수의 도함수는 $ h'(x) = f'(g(x)) \cdot g'(x)...

나눗셈 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 18

# 나눗셈 규칙 ## 개요 나눗셈 규칙(Quotient Rule)은 미적분학에서 두 함수의 비(商)를 미분할 때 사용하는 기본적인 도함수 계산법이다. 이는 분자와 분모가 각각 다른 함수로 구성된 경우, 단순히 분자와 분모를 따로 미분한 후 나누는 것이 아니라, 특정 공식을 통해 정확하게 도함수를 구할 수 있도록 한다. 본 문서에서는 나눗셈 규칙의 ...

곱셈 규칙

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 14

# 곱셈 규칙 (Product Rule) ## 개요 곱셈 규칙은 미적분학에서 두 함수의 곱을 미분할 때 사용하는 기본적인 도함수 계산법이다. 이 규칙은 단순히 각 함수를 별도로 미분한 후 곱하는 것이 아니라, **첫 번째 함수의 도함수와 두 번째 함수의 곱**과 **첫 번째 함수와 두 번째 함수의 도함수의 곱**을 더해야 한다는 점에서 중요하다. 이 규칙...

미분법

교육 > 수학 > 미적분학 | 익명 | 2025-07-16 | 조회수 23

# 미분법 ## 개요 미분법은 수학에서 함수의 변화율을 분석하는 기초적인 도구로, 미적분학의 핵심 주제 중 하나이다. 이는 특정 점에서의 순간 변화량(도함수)을 계산하여 함수의 성질을 탐구하는 방법으로, 물리학, 공학, 경제학 등 다양한 분야에서 응용된다. 미분법은 17세기 뉴턴과 라이프니츠에 의해 독립적으로 개발되었으며, 현대 수학의 기초를 형성하는 중...

피타고라스 정리

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 7

# 피타고라스 정리 ## 개요 피타고라스 정리는 직각삼각형의 세 변 사이의 관계를 설명하는 기하학적 정리로, 수학 역사상 가장 유명한 공식 중 하나이다. 이는 "직각삼각형에서 빗변의 제곱은 다른 두 변의 제곱의 합과 같다"는 내용을 담고 있으며, 삼각법, 물리학, 공학 등 다양한 분야에 응용된다. 정리는 고대 그리스 수학자 피타고라스(Πυθαγόρας)에...

좌표기하

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 9

# 좌표기하 ## 개요 좌표기하는 수학의 기하학 분야에서 **직교좌표계**를 활용하여 도형을 대수적 방식으로 표현하고 분석하는 방법론이다. 이는 17세기에 르네 드카르트(René Descartes)가 고안한 해석기하(Analytic Geometry)의 핵심 개념으로, 기존의 순수 기하학과 대수학을 통합하여 수학적 문제를 해결하는 데 중요한 도구로 사용된다...

기하학

교육 > 수학 > 기하학 | 익명 | 2025-07-16 | 조회수 8

# 기하학 ## 개요 기하학(幾何學)은 수학의 한 분야로, 공간과 형태, 크기, 상호관계를 연구하는 학문이다. 고대부터 현대에 이르기까지 인간이 자연현상과 물리적 세계를 이해하기 위해 발전시킨 체계적인 지식으로, 공학, 물리학, 컴퓨터 과학 등 다양한 분야와 밀접한 연관을 가진다. 기하학은 도형의 성질을 탐구하는 동시에 수학적 추론과 논리를 활용해...